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Abstract—Image segmentation using similarity or dissimilar-
ity measures between probability distributions has been of great
research interest in recent years. It is shown that the cross-
bin metrics such as EMD is superior to the bin-wise metrics.
However, existing segmentation approaches involving EMD are
limited to univariate distributions, or one-dimensional marginal
distributions of multidimensional features. This paper presents
a novel segmentation method based on the variational EMD
(VEMD) model, which can exploit joint distributions of multidi-
mensional features. This method formulates the segmentation
problem as the minimization of the EMD-based functional,
which measures the distance between the foreground (resp.
background) distribution and the reference foreground (resp.
background) distribution. Using the simplex method and theory
of shape derivative, we minimize the functional and obtain the
gradient descent flow. We use a Gaussian filtering level-set
method to obtain the numerical solution, in which the level-set
re-initialization and smoothness constraint commonly imposed
by the contour length are not necessary any more. Experiments
show that the proposed method outperforms the state-of-the-art
segmentation methods in the presence of illumination changes
and noise.

Keywords-image segmentation; variational Earth Mover’s
Distance; multidimensional distribution;

I. INTRODUCTION

Active contour models for image segmentation have been
studied for many years. Region-based segmentation methods
that use image region statistics are generally more robust
to noise and are less likely trapped in the local minimum
than the boundary-based ones[1]. The energy functionals
are minimized via variational calculus or shape derivative,
and the resulting gradient descent flows drive the evolution
of region boundary. The level-set method [2] is widely
employed in active contour models. One of its great benefit
is that the topological changes of regions, such as splitting
and merging, are naturally handled .

The first and second-order statistics, i.e., the mean or
covariance, may suffice for nearly homogenous region seg-
mentation [3]. But for noisy, cluttered or textured region seg-
mentation, one may require probability distribution modeling
of image regions. In these cases, the energy functionals are
often based on similarity or dissimilarity measures between
probability distributions. It has been shown that the cross-bin
metrics such as the Earth Mover’s Distance (EMD) are more
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suitable for segmentation than the bin-wise metrics, e.g.,
Bhattacharyya distance, Kullback-Leibler (K-L) divergence
or chi-squared distance [4], [5], [6]. The underlying reason is
that the cross-bin metrics take into account the possible drift
of features to adjacent histogram bins, which may be induced
by various effects of, say, noise, illumination variation, view-
ing angle changes or histogram binning scheme. However,
existing segmentation approaches that involve EMD are
limited to univariate distributions, or one-dimensional (1-D)
marginal distributions of multidimensional features (here-
after abbreviated as 1-D EMD). Being unable to favorably
utilize the joint distribution of multidimensional features,
1-D EMD may demonstrate unsatisfactory performance in
delineating highly noisy, cluttered or textured regions.

In order to resolve the above problem, this paper presents
a novel segmentation method based on the variational EMD
(VEMD) model [7]. It can exploit joint probability dis-
tributions rather than only 1-D marginal distributions of
multidimensional features. In our method, the segmentation
problem is expressed as the minimization of an energy func-
tional which measures the foreground (resp. background)
distributions with the reference foreground (resp. back-
ground) distributions. We minimize the functional through
the simplex method and theory of shape derivative to obtain
the gradient descent flow. Gaussian filtering level-set method
is used to obtain the numerical solution, in which the level-
set re-initialization and smoothness constraint commonly
imposed by the contour length are not necessary.

The structure of the remaining paper is organized as
follows. Section II reviews the related papers. Section III
formulates the EMD-based segmentations model. In section
IV, a two phase method is presented for minimizing the
energy functional. Section V compares the performance
of the VEMD with 1-D EMD and Bhattacharyya gradient
flows. Conclusion and future work are finally given in
section VL.

II. RELATED WORK

In [8], the energy functionals based on the Helling dis-
tance or chi-squared distance are proposed which compare
the difference between the reference histogram and his-
togram of the image region. The functionals are minimized
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using a shape derivative framework instead of the conven-
tional calculus of variation [9]. Freedman et al. [10] intro-
duced an image segmentation method by matching via K-L
divergence the distributions of learned shape and appearance
to medical imagery. In [11], image segmentation based on
Bhattacharyy distance was investigated which maximizes the
discrepancy between the empirical distributions inside and
outside the contours.

The EMD [12], known as the Wasserstein distance in
mathematics, is a cross-bin metric for measuring the dis-
similarity between probability distributions. The EMD based
on one-dimensional probability distributions has closed form
and its applications to image segmentation are investigated
independently by several researchers. In [6], the authors
prefer the cdf distance, a special case of which has an
identical form with 1-D EMD, to bin-wise metrics for dis-
tribution matching. They achieved promising segmentation
results in difficult medical imagery. Ni et al. [4] formulated
the image segmentation problem as the minimization of the
EMD between the one-dimensional object histogram (resp.
background) and the object reference (resp. background)
histogram. Therein the 1-D EMD is shown to outperform
the chi-squared distance. In [5], the shape derivative is used
to derive the gradient flow associated with the 1-D EMD;
combination of multiple EMD’s involving 1-D marginal
distributions is employed for image and scene segmentation.
The above methods are limited to one-dimensional proba-
bility distributions and are unable to take advantage of joint
distributions of multidimensional features.

The EMD is also employed for spatio-temporal object
extraction (tracking) from consecutive frames in video. In
[13], the Differential EMD (DEMD) was proposed for robust
tracking in the presence of illumination changes. The DEMD
is a two-phase optimization method, i.e., the best solution to
the transportation problem (TP) followed by derivatives with
respect to translation parameters. Based on the signature
as a means of probability representation [12], the DEMD
naturally takes advantage of multivariate distribution. It
however can not follow the complex boundaries and non-
rigid transformations of objects. In [14], 1-D EMD was used
for object tracking which enables mean shift like iteration; an
approach that combines histogram smoothing and bin-wise
metrics is studied so that multi-dimensional distributions can
be utilized. Li presented a variational EMD (VEMD) model
[7] which used multidimensional distributions via signature
for contour tracking.

Because of the benefits of the EMD, there is a lot of
research interest on, aside from image segmentation and
tracking based on EMD mentioned above, the novel EMD
variants and approximations for improving its efficiency
and robustness [15], [16], [17] or application in feature
detector/descriptor [18], among others.

III. IMAGE SEGMENTATION BASED ON VEMD

In this paper we use signature [12] to represent the
distribution of an image region. For simplicity, we assume
one image is composed of two regions—a foreground region
and a background region. Suppose we are given a reference
foreground (resp. background) signature, our segmentation
method consists in seeking an image region whose boundary
match the true object boundary.

Let I(z) : Q@ — R™ be a color image (n = 3) or a feature
map, where z denotes the spatial coordinate. We use the
level-set function ¢(z) to represent image region of complex
boundary, where I' = {z : ¢(z) = 0,z € Q} denotes the
boundary between the inner, foreground region {z : ¢(z) <
0,z € Q} and outer, background one {z : ¢(z) > 0,z € Q}.

Suppose that the feature space of the foreground object
is divided into Ny subspaces (or histogram bins). By using
the Heaviside function H, the signature of the inner region
can be represented by {h{i,q{j}u:l,,_,’Nf, where h/ and
gl denote the center and frequency of points that fall into
subspace u, respectively, i.e.,
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where §(u,I(z)) is the Kronkecker delta function which
equals unitary if I(z) belongs to subspace u and equals zero
otherwise. Likewise, the signature of the background region
can be represented by {h%, ¢%},—1  n,, where N, denotes
the subspace number of the background feature space and
h’, ¢’ have the following forms:
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Let {sﬁ,pi}uzly_.__,Nf and {s®, p®}.—1. n, be the refer-
ence signatures of the foreground and background, respec-
tively. The segmentation model is to seek a region boundary
I'' = {z : ¢(z) = 0,z € Q} such that the following



functional is minimized:
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where 0 < o < 11is a constant regulating the relative weights
between the two terms (in this paper we set a = 0.65 to
emphasize the role of foreground), df, (resp. d%,) denotes
the cost to transport unit mass from the subspace u to the
subspace v for the inner (resp. outer) region. It may be
computed as the Euclidean distance between hf (resp. h?)
and s/ (resp. s?).

Iv.

Following [7], we use a two phase method to optimize
the functional (3). We first fix ¢(z) and minimize g(rl,; 8)
(resp. g(rt,;#)) with respect to 7 (resp. r%, ), subject
to (s.t.) the corresponding constraint equations using the
simplex algorithm. Next, we fix 7/, and 7%, and minimize
with respect to ¢(z) to derive the gradient descent flow.

FUNCTIONAL OPTIMIZATION

A. Simplex Algorithm to Solve TP

Minimization of g(r],;¢) s.t. constraints (4) and that of
g(rf,; ¢) s.t. constraints (5) are independent and identical.
In the following, without ambiguity, we omit the subscript
or superscript f or b that denote foreground or background.

Let ¢ be fixed, the minimization of g(7.,;¢) s.z. the
corresponding constraints reduces to a classical balanced
TP. It is known that the optimal solutions to such a class
of problems always exist, and any one of the constraint
equations can be dropped while the remaining system of
M = 2N — 1 equations is linearly independent [19, Sec.
6.1].

We write g(7..; ¢) and the corresponding constraint equa-
tions in matrix form as (neglect the last equation in the
constraints):

TX,
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where ¢ and x are N2-dimensional column vectors, b is
an M-dimensional column vector and A is an M-by-N?
matrix. ¢, x, b and A have the following forms, respectively:

Let xT =[x} x| be an initial feasible solution, where
xg and xpn denote the vectors of basic and non-basic
variables, respectively. The matrix A can be accordingly
written as A = [B N], where B, comprising columns in
A that corresponds to the basic variables, is a basis of
Euclidean space RM_ and N consists of columns in A
corresponding to the non-basic variables.

In the simplex algorithm, ﬁrst we compute the relative
cost vector ry = ¢c5 BN — cX. If % £ 0, determine its
largest, positive component and the corresponding column

in N, denoted by nj, is selected as the vector to enter
the basis B; otherwise, the current solution is optimal
and stop the iteration. Next, we compute y; = B7!n;

and b = B~!b and decide the row index i for which
maxk{gk/ykj,ykj > 0}, where y;; and by are k™0
entries of y; and f), respectively. The column vector in B
that corresponds to the ith basic variable of xg is selected
to leave the basis. Finally, Select y;; as the pivot element,
use the Gaussian elimination to transform the column y; to
the unit vector. In this way, the transformation of the basis
variables are completed and in the meantime the coefficient
matrix of basis variables remains the identity matrix. The
above process iterates until we obtain the optimum solution.

The initial feasible solution can be obtained by the method
introduced in [19, Sec. 6.2]. Through the simplex algorithm,
we obtain the optimal solution to the TP and the correspond-
ing cost function can be written as

7 =
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S M es(i)B (i, u + N). Here cp(i) denotes the

th

entry of the vector cg, and B~!(i,v) the (i,v)'" entry

of the matrix B~1.

B. Minimization with respect to Level-set Function

Remember that, by using the simplex algorithm, we have
the optimal solutions to g(r;,; ¢) s.t. constraints (4) regard-
ing the foreground, and that to g(r’,; ¢) s.t. constraints (5)
regarding the background. Hence, leaving out the terms that
are irrelevant to ¢ from Eq. (7), the functional (3) can be
represented as

Ny
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1) Gradient descent flow: For computing the Euler-
Lagrange equation, we adopt the following C*°—regularized



Heaviside and the corresponding Delta functions:

1
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Using H. and 6. above, the algorithm has the tendency to
obtain the global minimizer [3]. We set € = 3 in all the
experiments of this paper. We write the ¢/ (¢) and ¢%(¢) in
continuous forms as

O
Q E
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The functional (8) can be minimized by the theory of
shape derivative. After some derivation, we obtain the gra-
dient descent flow

0
5%) = (—aF;+ (1 -a)F)d.(¢) (11)
where
Fy,=1/4, Zzg((s(u I)—q%),
u=1

and 7 denotes the artificial time.
2) Numerical implementation: Discretizing Eq. (11) in
space and time, we have

¢T+1(i’j) = (bT(Zv.j) + AT (12)
X ( - O‘Ff(ivj) + (1 - O‘)Fb(l’]»ée((b(z,.]))

where A7 denotes the discrete time step, ¢-(i,7) denotes
the value of function ¢ at pixel point (i,7) at time 7. To
guarantee numerical stability of the discrete equation, AT
should satisfy the CFL condition[20]:

AT max ‘(— aFe(i,5)+ (11— a)E}(ivj))5€(¢(iaj))‘ <1

(4,5)€Q
The level-set function ¢ can be arbitrary but in practice the
signed distance function (SDF) is usually preferred because
of its good properties. During contour evolution, the level-
set function may deviate from the SDF. So periodical re-
initialization is required which makes the level-set function
a true SDF while keeping the zero level-set unchanged.
However, there lacks explicit criterion to determine how
often one needs to perform such re-initialization. In addition,
it is time consuming despite the fast algorithms like fast-
marching method.
We adopt the Gaussian filtering level-set method [21].
One of the main steps in this method is to filter the level-
set function, after each iteration, with a Gaussian function
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whose standard variance should satisfy o<\/A7. Based on
this method, we do not require the re-initialization process
in the iteration; the smoothness of the level-set function is
also ensured so that the traditional smoothness constraint,
commonly imposed by the contour length term, is not
necessary. In practice, o = 0.5 and the windows size n = 5
of the Gaussian kernel are well suited for our problem.

C. Computational Complexity

In the following, we analyze the computational com-
plexity of one iteration involved in the VEMD. The main
computations are induced by the simplex algorithm, called
two times—one for the foreground and the other for the back-
ground, the update of level-set function and the Gaussian fil-
tering. It is known that, in the worst case, the computational
complexity of the simplex algorithm is exponential in the
problem size M, ie., M = 2Ny — 1 (resp. M = 2N, — 1)
for the foreground (resp. background). Fortunately, if M is
not large, the iteration number Ng for the simplex algorithm
to converge from a feasible solution to the optimal one will
be Ng ~ 2M ~ 3M [19] (Ns =~ 3M in our experiments).
Hence, the computational complexity of simplex algorithm
is O(6(Ny + Ny — 2)). It is clear that the computational
complexity of the level-set function update is O(Ny), where
Ny is the image size. With regard to the Gaussian filtering,
its complexity is O(n?Ny), where n denotes the width of
Gaussian kernel.

The running time of one iteration of VEMD is in average
265ms in the cheetah image with Ny = N, = 28, Ny =
77648. The program is written in matlab code on a IBM
T42 laptop equipped with Intel© Pentium© M Processor
1.80GHz and 1.5GB memory.

V. EXPERIMENTS

All the programs are written in matlab code. Throughout
the experiments, we use the RGB color space. We compare
three gradient descent flows: the VEMD flow, 1-D EMD
flow[4] and Bhattacharyya flow (BHAT)[11]. In 1-D EMD
flow, every gray-level of three channels is quantized into
16 bins, and the sum of three 1-D EMD’s is used based
on the marginal 1D histograms of three channels. In BHAT
flow, the 16 x 16 x 16 joint histograms are used. In VEMD,
the color spaces of the foreground (resp. background) is
partitioned into 28 subspaces by K-Means algorithm.

A. Comparisons in Synthetic Images

1) Synthetic image #1: The reference foreground and
background distributions are obtained in synthetic image #1
as shown in Fig. 1(a). By zooming in the reference image (a)
one can observe the foreground—the small rectangular region
located at the center. The probability density function of the
foreground is a 3-D Gaussian N (u,X) with mean vector
w = [205.69 158.95 70.96]T and covariance matrix ¥ =
[747.40 542.43 216.53; 542.43 65.18 328.50;216.53 329.50 241.27]



(written in the matlab notation), while that of the background
is N(u,diag{X}), where diag{X} denotes a diagonal
matrix that has identical diagonal entries to 3. Hence,
the foreground and background have identical marginal
distributions. Fig. 1(b) shows the scatter plots of foreground
(blue) and background (black) pixels, respectively; their
respective marginal histograms are shown in Fig. 1(c). Fig.
1(e) shows the initialization curve, and Fig. 1(f) presents
the convergence results of BHAT, 1-D EMD and VEMD
(from left to right). The 1-D EMD fails because it can
not distinguish the foreground from background since only
marginal distributions are used. In contrast, the BHAT and
VEMD which utilize the joint distributions converge to the
true boundary.

L [ L]
SN NN VN

Reference (b) Scatter plot(c) Marginal distributions of foreground (top)
and background (bottom)

(a)

image

(d) Test image (e)
Initialization

(f) BHAT, 1-D EMD and VEMD (from left to
right)

Figure 1. Comparison with synthetic image #1 in which the foreground
and background have identical marginal distributions. By zooming in the
reference image (a) one can observe the foreground-the small rectangular
region located at the center. The test image (d) is identical to the reference
image. 1-D EMD fails to handle this case while BHAT and VEMD
succeeds.

2) Synthetic image #2: In this synthetic image as shown
in Fig. 2(a), the small region at the image center is the
foreground. In the reference image, the gray-level distri-
butions of three channels are independent, each following
univariate Gaussian of various means and small variances. In
the test image 2(d), the background distribution is identical
to that in the reference image; the foreground distribution
is similar to those in the reference image but have distinct
means. Hence, the foreground distribution in the test image
can be approximately seen as a shifted version of that in
the reference one. Fig. 2(b) shows the scatter plots of the
foregrounds in the reference (black) and test (blue) images;
their respective marginal distributions are shown in Fig.
2(c). Fig. 2(f) presents the convergence results of BHAT,
1-D EMD and VEMD (from left to right) starting from the
initialization contour 2(e). The BHAT flow which is based
on bin-wise, Bhattacharyya distance, fail to handle this case.
However, the 1-D EMD and VEMD flows which are based
cross-bin metrics converge to the true boundary.

B. Comparisons in Real Images

We test the performance of three methods vs illumina-
tion changes and varying noise level. The reference zebra
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Reference (b) Scatter plot(c) Marginal distributions of foreground in the
reference (top) and test image (bottom)

(a)

image

00000000000000)

(d) Test image (e)
Initialization

(f) BHAT, 1-D EMD and VEMD (from left to
right)

Figure 2. Comparison with synthetic image #2. The reference image (a)
and test image (d) have identical background distributions but different
foreground ones. The foreground distribution in (d) can be approximately
seen as a shifted version of that in (a). 1-D EMD and VEMD converges to
the true boundary but BHAT does not.

image and cheetah image are shown in Fig. 3, from which
the reference foreground and background distributions are
obtained. Initializations of contours are similar to those in
the previous section.

Figure 3. Reference zebra image and cheetah image.
We randomly change the illumination by scaling each
gray-level of three color channels as follows:

Ig(x,y):’yslg(x,y), S:{RaGaB}a

where Ig(x,y) denotes the gray-value of channel S at point
(z,y), vs denotes a random number uniformly distributed
on the interval [0.7,1.3]. As to the noise, we corrupt every
pixel through the formula

IS(l'vy) = IS(JI,y) + /\s(a:,y),

where Ag(z,y) has Gaussian distribution with zero mean
and variance 2.

Fig. 4 shows the segmentation results of three gradient
flows in the zebra images. As seen in Fig. 4(a), when illumi-
nation changes, the results of BHAT are very poor in that the
contour almost always converges to nothing. In contrast, 1-D
EMD and VEMD are more robust to illumination changes:
the zebras are well segmented from the background. It can
also be seen that the segmentation results of VEMD are more
accurate than 1-D EMD. Fig. 4(b) shows the segmentation
results in the presence of noise. DEMD accurately delineates
the boundaries of zebras despite increasing noise levels. The
results of 1-D EMD is inferior to those of EMD but is
still satisfied. Invariably, BHAT does not work-the contour
converges to nothing in all noisy images.

S ={R,G, B},



(a) Numination changes. Top row: BHAT; middle row: 1-D EMD; bottom row: VEMD

(a) NNumination changes. Top row: BHAT; middle row: 1-D EMD; bottom row: VEMD

(b) Noise pollution (variance of Gaussian increases from left to right). Top row: BHAT;(b) Noise pollution (variance of Gaussian noise increases from left to right). Top row: BHAT;

middle row: 1-D EMD; bottom row: VEMD

Figure 4. Comparison of segmentation results (yellow curves) in zebra
images. Note that the image with no yellow curves superposed indicates
that the contour converges to nothing on that image.

The segmentation results in the cheetah images are shown
in Fig. 5. Fig. 5(a) shows the results of three gradient flows
against illumination variation. The VEMD successfully out-
lines the object boundary; the 1-D EMD has poor results in
the cheetah images which contain illumination changes; the
BHAT converges to nothing in all images but the second and
third ones. Fig. 5(b) presents convergence of three gradient
flows vs increasing noise levels: the BHAT exhibits very bad
results; the 1-D EMD gets worse as the noise level increases;
VEMD well segments the cheetah from the background in
all five noisy images.

In view of the experiments above, we conclude that
the bin-wise metrics such as Bhattacharyya distance is not
suitable for segmentation of images that contains large
illumination changes and noise level. The 1-D EMD shows
relatively good segmentation results in the zebra images, but
its performance deteriorates greatly in the cheetah images.
The reason may be that the gray-level correlations of three
channels in the zebra images are small. As such the marginal
distributions is adequate to characterize their statistic in the
zebra images. However, the probability distributions of the
foreground and/or background in the cheetah images are
complex so that only the joint distributions of three channels
are sufficient for statistics modeling. In all cases, VEMD
demonstrates strong robustness to illumination changes and
noise.
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middle row: 1D-EMD; bottom row: VEMD

Figure 5. Comparison of segmentation results (yellow curves) in cheetah
images. Note that the image with no yellow curves superposed indicates
that the contour converges to nothing on that image.

VI. CONCLUSION AND FUTURE WORK

The main contribution of this paper is a novel segmenta-
tion method based on the VEMD model. This method can
exploit joint probability distributions of multidimensional
features. It solved the weakness of the existing 1D EMD
segmentation models, namely they are limited to univariate
distributions or one-dimensional marginal distributions of
multidimensional features. Hence, our method can make
full use of the benefits of this cross-bin measure for robust
segmentation. The experiments showed that our method is
robust to illumination change and noise, outperforming the
methods based 1-D EMD and the bin-wise metrics such as
Bhattacharyya distance.

Through signature representation, more distinct, high-
dimensional features are readily applicable to our method.
It is interesting to adopt more powerful feature descriptors
in the VEMD to handle segmentation in more challenging
situations. In the current work, the VEMD requires the
probability distributions of foreground and background be
known a prior. As in [4], assuming the local distributions
in the foreground (resp. background) are similar everywhere,
we may develop a different VEMD that do not require the
reference distributions. This issue will be studied in the
future work.
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