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Image Sequence Interpolation Based on Optical Flow,
Segmentation, and Optimal Control

Kanglin Chen and Dirk A. Lorenz

Abstract—When using motion fields to interpolate between two
consecutive images in an image sequence, a major problem is to
handle occlusions and disclusions properly. However, in most cases,
one of both images contains the information that is either discluded
or occluded; if the first image contains the information (i.e., the re-
gion will be occluded), forward interpolation shall be employed,
while for information that is contained in the second image (i.e.,
the region will be discluded), one should use backward interpola-
tion. Hence, we propose to improve an existing approach for image
sequence interpolation by incorporating an automatic segmenta-
tion in the process, which decides in which region of the image for-
ward or backward interpolation shall be used. Our approach is a
combination of the optimal transport approach to image sequence
interpolation and the segmentation by the Chan—Vese approach.
We propose to solve the resulting optimality condition by a segre-
gation loop, combined with a level set approach. We provide exam-
ples that illustrate the performance both in the interpolation error
and in the human perception.

Index Terms—Active contours, image sequence interpolation,
optimal control, optical flow, segmentation, transport equation.

I. INTRODUCTION

MAGE sequence interpolation is the generation of interme-

diate images between two given consecutive images, i.e., a
process that is, for example, relevant if the image acquisition is
slowly or expensive and has broad applications in the fields of
video compression, medical imaging, etc. In video compression,
the knowledge of motions helps in removing the nonmoving
parts of images and in compressing video sequences with high
compression rates. For example, in the Motion Pictures Expert
Group format, motion estimation is the most computationally
expensive portion of the video encoder and is normally solved
by mesh-based matching techniques [1]. While decompressing a
video, intermediate images are generated by warping the image
sequence with motion vectors. In the field of medical imaging,
image sequence interpolation is also desired. For example, the
diagnostic requires a point-by-point correspondence between
the same tissue from the image sequence taken at difference
times [2]. Moreover, image sequence interpolation is also able
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to improve the quality of historic movies by increasing the frame
rate to the modern standard. Similarly, in disease diagnostics, an
image of a patient’s tissue may need to compare with a healthy
tissue [3]. This is an example of how image sequence interpola-
tion in some cases can be used to solve the application normally
classified as image registration. However, in this paper, we focus
on movielike image sequences; these sequence are notably dif-
ferent from registration problems in which we may have dif-
ferent objects that move in different directions resulting in dis-
clusions and occlusions.

Considering the problem of image sequence interpolation, the
optical flow (the measurable 2-D motion field between two im-
ages) plays a decisive role. Since Horn and Schunck proposed
the variational approach to estimate optical flow in their cele-
brated work [4], this field has been widely developed. To pre-
serve the flow edges, nonlinear isotropic constraint was applied
instead of the linear constraint in the Horn and Schunck method
[5], [6], an anisotropic diffusion constraint improved the preser-
vation of edges by an oriented smoothness constraint in which
smoothness is not imposed across edges [7], [8], and the TV-L!
method is not only able to preserve the flow edges but also able
to robustly work against the outliers [9].

There are several existing variational methods based on op-
tical flow to interpolate missing intermediate images. In [10],
the variational method penalized by the elastic regularization is
considered, i.e.,

Jrigid(u./ b) = / (ut +b- VU)2 + /\|Vb/ + Vb|2dldf

[0,T]xQ

where b denotes the optical flow and V' denotes the transpose
of the Jacobi matrix of b. Hence, they do not exactly enforce the
brightness constancy constraint u; + b - Vu = 0 but penalize its
violation as in the classical Horn and Schunck approach. Mini-
mizing this functional gives the interpolated images with max-
imal rigidity and has applications in the field of medical image
registration, e.g., registration of magnetic resonance images. In
[11], the authors keep the assumption of brightness constancy
without differentiating it and update the flow field with the help
of robust estimators. There, the authors also incorporated ob-
ject-based motion segmentation. In [12], the authors also keep
the assumption of brightness constancy without differentiating
it and apply the time-dependent Horn and Schunck functional,
ie.,

T T
A 1
0 Q

0

where 4(0) = g and ur are the given two images. After calcu-
lating the time-dependent optical flow, one can warp the initial
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image ug to a certain time. In [13], the authors do enforce the
brightness constancy constraint again and minimize a functional
with equation u; + b - Vu = 0 as a constraint.

Different from the global variational methods are the
so-called pixelwise methods. In [14], the path-based interpo-
lation sequence method is considered. There, one searches
where every pixel comes from and traces out the path of every
pixel from the given two images. To stabilize the interpolation
and to handle occlusion, postprocessing is used by means of
verification of the displacement flow. In [15] and [16], another
pixelwise method is introduced, namely, the perception-based
interpolation. They simulate human visual perception in the
following way: To begin with, they detect the edges and ho-
mogeneous regions, and then, they estimate the translets by
matching edges; finally, they use the forward warping and
feather the interpolated images.

Aside from the aforementioned image sequence interpolation
methods, the image warping technique was introduced in [17]
to generate the intermediate image based on a priori known
optical-flow field, e.g., estimated by the Horn and Schunck
method. However, this kind of optical flow may not be suitable
for image sequence interpolation (see [12] and [15]). In [18],
we introduced a more natural way to utilize the optical flow into
image sequence interpolation under the framework of optimal
control similar to [13]. This method can be applied to the cases
that image sequence obeys rigid and nonrigid movements, and
also robustly works against noise.

In this paper, we aim to eliminate a common drawback of
all flow-based methods for image sequence interpolation. While
using forward interpolation, it is impossible to obtain good re-
sults for regions that are disclosed, since any method has to
guess the appearing pixels. Similarly, backward interpolation
will fail in regions that are occluded. To solve this problem, we
propose an extension of our method proposed in [18], which
incorporates a segmentation process for the image domain to
automatically detect regions in which forward or backward in-
terpolation shall be employed.

This paper is organized as follows: In Section II, we review
the segmentation model in [19], while in Section III, we recall
the basics of our proposed optimal control approach to image
sequence interpolation. Section IV presents the combination
of both approaches, and Section V presents details on the
numerics.

II. SEGMENTATION WITH ACTIVE CONTOURS

The classical active contours models or snakes [20], [21] are
widely used in image segmentation. However, in these models,
an edge detector related to the image gradient is needed to stop
the evolving curve on the boundaries of objects. In [19], Chan
and Vese introduced a model based on active contours and the
Mumford—Shah segmentation [22], which does not require an
edge detector. Consequently, this model can detect contours
both with and without gradient, e.g., for objects with very
smooth boundaries or even with discontinuous boundaries. We
review the model of active contours without edges for the sake
of completeness.

Let us define curve C' as the boundary of an open subset w of a
bounded domain Q C R?. Assume that C' segments € into w and
2\ w, and constants ¢; and ¢o depending on C are the average
of image w inside and outside C, respectively. Denoting with
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|C| the length of C' and with |w| the area of w, the segmentation
will be achieved by minimizing the following energy:

/ lu — co|?dx
o\w
+u|Cl+ vw| (1)

F(Cl,CQ,C) =)\ /|u— cl|2d:17—|— Ao

where 4 > 0, v > 0, A1, and Ay > O are the regularization
parameters. To minimize (1), one uses a level set formulation.
Suppose C' is represented by the zero level set of a Lipschitz
function ¢ : 2 — R, such that

C=0w={reQ:¢(x)=0}
w={zeN: $(x) >0}
Q\w={ze:¢(z) <0}.
Using the Heaviside function H and the 1-D Dirac measure
bo defined as

(1 ifz>0 _d
H(Z)_{O ifz<0 60(2)_dzH(Z)

one can reformulate (1) in the following way:

Flen,en,9) =M / fu — 1 [P H () da

Q

+A2/|u—c2|2(1 H (§(x)) do

Q

tu / 60 (¢(x)) [V ()] da
Q

+ y'/H (¢p(z)) dz.
Q

In order to compute the associated Euler—Lagrange equations
with respect to ¢, one chooses a smooth approximation H, and
b, = Hl, eg.,

Hy(z) = % <1 + %arctan (g))

0s(2) = L cos? (arctan (f))

ST S

which converge to H (pointwise almost everywhere) and ¢ (in
the sense of distributions) as s — 0. Let us define for s, ¢ > 0,
functional Fj . by

Fs,e(ChCz;(b) :/\1/|u—01|2Hs (¢(2)) d

Q

o / = eof2 (1 = H, (9(2))) da

Q

u 5, ((2)) V(). da

—

+v [ Hy(¢(x))dx

ZD‘-..___5 2

where | - |- denotes the e-smoothed total variation functional
defined by

Vol = VIV +e.
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To minimize F; . with respect to ¢, one deduces the asso-
ciated Euler-Lagrange equations for ¢ and parameterizes the
descent direction by an artificial time ¢ > 0. The equation in
¢(t, ) with the initial contour ¢(0,z) = ¢o(x) is

=00 (15 (55) v Ml
+,\2(u — 02)2) in (0, OO) x ) 2)

¢(?))= $o in Q2
b6s(p) 09 __
ol an = 0 on 0f)

where 0¢/0n denotes the normal derivative of ¢ on the
boundary.

III. OPTICAL-FLOW-BASED OPTIMAL CONTROL FOR IMAGE
SEQUENCE INTERPOLATION

Given two consecutive images ug and up, we desire to find a
flow field such that the field drives the transport equation with
the initial value uy to fit uy at time 7" as well as possible. This
process has been accomplished in [18] under the framework of
optimal control, and we briefly review this method. Consider
the Cauchy problem for the transport equation in [0,7] x €,
QCR?ie,

Swu(t,z) + b(t,z) - Vu(t,z) = 0in]0,T] x Q
u(0,2) = up(z) in Q 3)
Un(t,2) = 0in]0,T] x ON.

Here, the (time-dependent) flow field is denoted by
b : [0,T] x @ — R?, the image function depending on
t and z is denoted by u, and u,, denotes its normal derivative.
The Neumann boundary condition u,, = 0 is not essential in
this case since we assume that b vanishes on JS) for almost
everywhere ¢ €]0, T in the following context.

Our intention is to find a flow field b such that the “trans-
ported” image u(7T') at time T matches image u as well as pos-
sible. This motivates us to minimize functional (1/2)||u(T) —
uT||%2(Q). However, this problem is ill posed, and hence, we
add an additional regularization term in the cost functional. In
addition, we add the divergence-free constraint of b and obtain
an optimal control problem as follows for a given A > 0: Min-
imize

T
1 A
I6) = 5 D) = urllagey + 5 [ 170G .
0

subject to  divb = 0 and (3).

The associated Karush—Kuhn—Tucker system for the optimal
control problem uses a dual variable p for constraint (3) and a
dual variable ¢ for the divergence-free constraint, and is given
by

us+b-Vu=0in]0,T] x Q with 4(0) = ug in 2

pe+b-Vp=0in[0,T[xQ
with p(T) = = (w(T) —ur) inQ . &)

AMb+Vqg=pVuin[0,T] x Q . _

divh = 0in [0, 7] x Q with b =0 on 992

According to the conservation law [23] and the divergence
theorem [24], the divergence-free constraint of b makes the flow
volume conserving, smooth, and varying not too much inside a
moving object. At least, the last two properties are desirable for
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the computation of the optical flow. Moreover, the divergence-
free constraint is a somehow technical assumption as it implies
that the equation for the dual variable p of w is also a transport
equation and hence simplifies the numerical implementation.

To solve (4) numerically, we apply a modified segregation
loop. We suppose n = 1,..., Nigop and Ny, is the iteration
number. Given ug, ur, b"~1(t), and ), the iteration process at
iteration n proceeds.

1) Compute u"~1(¢), Vu"~1(t), and u"~(T) by the for-

ward transport equation using ug and b"~1(¢).

2) Compute p"~1(t) by the backward transport equation
using —(u™ " Y(T) — urp) and b"1(1).

3) Compute the solution of the Stokes equations with right-
hand side p"~1(¢t)Vu"~1(t) and A. Then, denote it by
Sb"L(t).

4) Update b™(t) = b"~1(t) + 6b"71(¢).

Although the segregation loop does not solve (4) directly, it
is shown in [18] that the modification with update 56" ac-
tually solves the necessary conditions of another optimization
problem, namely, minimize

[T = urll32 g

subject to

us+b-Vu=0in]0,T] x Q, with u(0) = ug in Q
divb =01in [0, T] x Q, with b = 0 on 9.

From the point of view of the regularization theory, one may
see this segregation loop as a kind of a Landweber method for
minimizing ||u(T) —ur||3- () Which is inspired by a Tikhonov
functional.

IV. OPTICAL-FLOW- AND SEGMENTATION-BASED OPTIMAL
CONTROL FOR IMAGE SEQUENCE INTERPOLATION

A. Modeling

Observing the movement of objects in an image sequence, we
may divide the domain into the “covered” and “disclosed” do-
mains. The “covered” domain refers to the regions in which the
characteristics of two different pixels starting at time O end up
at time 7" in a same place. Obviously, the “ covered” domain is
suitable for the forward interpolation from O to 7. In contrast,
the “ disclosed”” domain refers to the regions in which no charac-
teristic of a pixel starting at time O ends up at time 7" in a place.
Since our interpolation method under the framework of optimal
control will produce a continuous optical flow, the *“ disclosed”
domain will be filled in with the neighbors, and hence, we get
a dense optical flow. However, using the filled-in optical flow
is still impossible to recover the objects in the *“ disclosed” do-
main, if we only take information from 1. To overcome this
drawback, which is inherent in all flow-based methods, we can
apply a backward interpolation from 7' to O in the “disclosed”
domain, i.e., the “disclosed” domain is turned to the “covered”
domain in this case. An illustrative example of this phenom-
enon is the data set MiniCooper,! which is shown in Fig. 2. In
the zoomed-in subimages, one easily observes that, in the upper
part of the head region and the rear part of the car, some new
objects (pixels) appear.

Thttp://vision.middlebury.edu/flow/data/
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Motivated by this explanation, we propose to apply active
contours to achieve an automatic selection process of the re-
gions for forward or backward interpolation. To that end, we
incorporate the Chan—Vese segmentation process described in
Section II into our optimal control framework from Section III.
Moreover, we modify our optimal control framework in which
we use a smoothed TV penalty for the flow field b to obtain
sharper edges for flow. We assume that b vanishes on 92 and
model the evolving curve C' in ) as the boundary of an open
subset w of €. The forward interpolation, denoted by , shall
take place in set w, and the backward interpolation « shall be
used in © \ w. Hence, our cost functional is defined as

1. 1. .
L, C,w) = B 1a(T) — “T”?'ﬂ(m) T3 [|a(0) — uUHi?(Q\G)

T
+/\//\/|Vb|2+edxdt+u|0|+l/|w| 3)
0 Q

governed by the forward transport equation, i.e.,

d+b- Vi =0in]0, 7] x 2
(0) = ug in

the backward transport equation, i.e.,

@y +b- Vi =0in[0, T[x
ﬂ(T) = ur in Q

and the divergence-free equation, i.e.,
divb=01in[0,T] x Q.

The desired interpolation u at time ¢ is estimated by
_fat,x)
ult o) = {aa,x)
Minimizing (5), we obtain the optical flow and the active con-
tours for interpolation. Although we do not compute u(¢) di-
rectly from (5), in Section V, we shall see that it is necessary to
compute 4(t) and u(t) by computing the optical flow and the
active contours. Thus, interpolating «(¢) from (6) requires al-
most no additional computation.
To turn the cost functional (5) into a functional that is com-
putationally feasible, we follow the lines of Chan and Vese de-
scribed in Section IT: We assume that ¢ is the zero level set of C'

introduced in Section II and use a smoothed Heaviside function
to reformulate (5) in terms of level set as

r e w

v e\ ©

Joclb,$) =5 [ 1(T) = url? H,(6) da

+ s(9)|V|edx + V/HS(QS) dz. (7)
Q
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Fig. 1. Color coding map of the optical flow.

B. First-Order Necessary Optimality Conditions

We obtain the first-order necessary optimality conditions by
defining the Lagrangian (with Lagrange multipliers p, p and q)
as

T
|Vb|2+€dwdt+//ut+b Va)p dxdt
0

0
T T
+// (at+b-Va) pdwdt+//qd1vbdwdt
0 Q 0 Q

+,J/59 )V da:+1//He(¢)
Q

Finally, the necessary optimality conditions system consists
of four equations:
1) the forward transport equation and its adjoint equation, i.e.,

it +b-Vi=0in]0,T] x Q

(0) = up in Q
Pr+b-Vp=0in[0,T[x

p(T) = — (U(T) — ur) Hs(¢) in Q

>

®)

2) the backward transport equation and its adjoint equation,
i.e.,

G +b- Vi =0in [0, 7[x0

ﬂ(T):uTinQ 9
Betb-Vi=0in]0,T] x © ©)
$(0) = (4(0) — uo) (1 — Hy(4)) in Q2

3) the TV-Stokes equation (cf. [25]), i.e.,
AV (|Vb| ) + Vg =pVi+pVain [0,7] x Q

divb=01in[0,7] x Q
b= 0on o

(10)
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(e) ®
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(d)

Fig. 2. Frames (a) 10 and (b) 11. (c) Zoomed-in region of the head area in (a). (d) Zoomed-in region of the head area in (b). (¢) Zoomed-in region of the rear of

the car in (a). (f) Zoomed-in region of the rear of the car in (b).

(@

©

Fig. 3. Experiment on frames 10 and 11 of Fig. 2. (a) Optical flow calculated by the smooth method. (b) Optical flow calculated by the TV.-segment method.
(c) Active contours calculated by the TV.-segment method. (Black) Backward and (white) forward interpolation regions.

4) the equation for segmentation

5.(8) (19 - (12) — v = 3 1a(T) — ur?
+3 [a(0) - uOIQ) —0inQ

5:(¢) 8 _
ol on = 0 on 012.

(1)

V. NUMERICAL ASPECTS

To solve the forward- and backward-transport equations (8)
and (9), we utilize the method of characteristics by solving the
associated ODE using Runge—Kutta fourth order [26]. To solve
the TV-Stokes equation (10) at time ¢, we apply the following
iterative procedure to update b and ¢ with time step At, i.e.,

brTH(E) =" (t) + At <v ) <%> n %Vq"(t)
~ 30V - 30V

"THE) = q" () + ALV - b7 (1). (12)

In [27], it is shown that this explicit (forward Euler) time-
marching scheme is conditionally stable, i.e., the time step At
should be selected in a manner that gives sufficient decrease in
the functional. However, the forward scheme has rather unde-
sirable asymptotic convergence properties, which can make it
inefficient. Hence, Vogel and Oman introduced the lagged dif-
fusivity fixed point iteration, denoted by FP-iteration, in [27].
The FP-iteration linearizes the nonlinear diffusion part in (12)
atiteration n+ 1, i.e., we apply the following diffusion operator:

Vo
DF™v=V | ——
=975
at the active iteration n + 1. Hence, we can formulate it into an
implicit scheme, i.e.,
(1 - AtDF(b™)b" ! = 2

where z denotes the rest of the terms not involving b+l In 28],
it was shown that this algorithm is robust and globally linearly



CHEN AND LORENZ: INTERPOLATION BASED ON OPTICAL FLOW, SEGMENTATION, AND OPTIMAL CONTROL

1025

Fig. 4. Experiment on frames 10 and 11 of Fig. 2. (a) Interpolated frame by the smooth method at time 7'/2. (b) Interpolated frame by the TV . -segment method

at time 7'/2.

convergent. The details of underlying scheme according to v
read as follows (using notation b = (v, w)):

n+1 n+1
. ( v ) =0 (IVB"|71) v 4 e

Vb7, Vb .
= — [Vb"|22 (vpvr, + vy, + wiwy,
vt
+wywy,) vt + vabxn|
ontl vl 6
K <|vybn|s) =0, (V017 o+
= — |V |c? (vgvgy + vy vy, + wywy,
,Un-}—l
et

Altogether, the discretization of (12) w.r.t. v yields

n+1 n|—3 n,.n n,.n n, n n, n n+1
" ALV 2P (R, g o, Fwiwh, +wwl, ) v

2 Ve T Uy Ugy ry) Cw
Un-l—l 3
—At—=£ AtV =
,Un+1
n, n n,n n,,m ™ ntl vy
x (vyn, + oy vy, Fwiwl, +wywy,) vyt _At|Vb"|5
At At . e
="+ =5 = (it +pi).

Similarly, solving (11), we also use a time-marching scheme
and apply the FP-iteration.

A. Segregation Loop

As explained in Section III, we apply a modified segregation
loop to solve the equation system (8)—(11). We suppose n =
1,..., Nigop and Nieop is the iteration number. Given wg, ur,
bL(t), ¢" 1, A, p, and v, the iteration process at iteration n
proceeds.

1) Compute 4" ~1(t), Vi"~1(t), and 4" ~1(T') using uy and

bnL(t).

2) Compute p"~1(t) using 4"~ 1(T), ur, and H,(¢"~1).

3) Compute @"~1(t), Va"~1(t), and @"~1(0) using ur and

bnL(t).
4) Compute p"1(t) using @"*(0), ug, and Hy(¢" ).

(d) (® ®

Fig. 5. (a) Zoomed-in region of the head area in (a) of Fig. 4. (b) Zoomed-in
region of the head area in (b) of Fig. 4. (c) Zoomed-in region of the contours of
the head area generated by the TV.-segment method. (d) Zoomed-in region of
the rear of the car in (a) of Fig. 4. (¢) Zoomed-in region of the rear area of the
car in (b) of Fig. 4. (f) Zoomed-in region of the contours of the rear of the car
generated by the TV.-segment method.

5) Compute the solution of the TV-Stokes equation with the
right-hand side p"~1(t)Va"=1(t) + p"~L(t)Va"—1(¢).
Then, denote it by 6b™~1(¢).

6) Compute solution ¢™ of (11) using @(T'), ur, %(0), ug, and
¢"~1 as the initial value of the time-marching scheme.

7) Update b"(t) = b™L(t) + 66" 1(t).

Similar to the segregation loop in Section III, this segregation
loop does not solve the original problem but actually approxi-
mates a solution of the necessary conditions of another mini-
mizing problem, namely, minimize

1. 2 1. 2
5 (T = urllze oy + 5 18(0) = wollz2(o\m)

subject to

G +b- Vi =0in]0,T] x Q with 4(0) = ug in 2
i +b- Vi = 0in [0, T[xQ with &(T) = uz in Q
divb = 01in [0, T] x Q with b = 0 on 99Q.

Again, we may see the segregation loop as a kind of a
Landweber method for minimizing (1/2)|a(T) — uT||%2(w) +
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(b)
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Fig. 6. Data sets of Stich. (a) Face. (b) Earth. (c) Bunny. (d) Dragon.

(b)

(d

(e)

Fig. 7. (a) Frame 9 of Earth. (b) Frame 12 of Earth. (c) Absolute difference of (a) and (b). (d) Optical flow calculated by the TV.-segment method. (e) Active

contours of segmentation calculated by the TV .-segment method.

m — up||52,0n=y» Which is inspired by a specia
1/2)||%(0 %(Q\w) hich is inspired b ial
Tikhonov functional.

B. Implementation

In optical-flow estimation, it is common to use the hierar-
chical processing (cf. [29] and [30]) to handle large displace-
ments, and we apply this technique to get a start value b° for the
optimality system. We execute a procedure.

1) Downsample the images into level .

2) Carry out the segregation loop in level [, and get b'.

3) Upsample the optical flow into level [ — 1, and get b' 1.

The estimated optical flow b'~! is a start value of the hierar-
chical method in level [ — 1, and we repeat it until level 0. In the
coarsest level, we assume the start value to be zero.

The essential parameters of the quality of image sequence in-
terpolation are the regularization parameters A, j, and v. Param-
eter A strongly depends on the intensities of the optical flow (ve-
locities). For larger velocities, we have to penalize it with larger
A. In the praxis, if the velocities are smaller than 25 pixels be-
tween two image, then we can set A € [10*%,10°]. Parameters
1 and v, which involves the segmentation, were set both equal to
1. Regarding the time step in the time-marching scheme of the
parabolic equations for optical flow and segmentation, we set
At = 103, since the implicit method is stable with the arbitrary
time step. Then, in few steps, we can achieve the convergence.

The smoothing parameter € was set equal to 1 and s equal to
1072,

All data sets that we are considering are 8-bit RGB color im-
ages. Dealing with the RGB color images, we convert them into
8-bit grayscale first, calculate the optical flow and active con-
tours, and, at the end, warp every color channel with that flow
field.

C. Experiments and Evaluation

To visualize the flow field both in angles and intensities, we
utilize the color coding map in Fig. 1 (cf. [17]). The direction of
the flow is coded by hue, and the intensity is coded by saturation,
i.e., the brighter the color, the larger the velocity.

First, we compare the new introduced method, denoted by
the TV _-segment method, with the smooth method introduced
in [18] (see Fig. 2). To illustrate the ability to handle disclu-
sions and occlusions, we apply them on the data set MiniCooper.
First, Fig. 3 shows that the TV_.-segment method preserves the
flow edges better than the smooth method. Consequently, the in-
terpolation by the TV, segment keeps the boundary of objects
(shapes) better than the smooth method. Additionally, the as-
sociated active contours for segmentation are shown in Fig. 3.
In Fig. 4, we present the interpolated image of the data set in
Fig. 2 at time 7'/2 by the smooth method and the TV .-segment
method. The associated zoomed-in subimages in Fig. 5 show
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(d)

(e

Fig. 8. Frame 11 calculated by the (a) blend, (b) optical-flow, (c) full, (d) multiscale, and (e) TV.-segment methods.

(@)

(d)

©

Fig. 9. (a) Frame 15 of Bunny. (b) Frame 18 of Bunny. (c) Absolute difference of (a) and (b). (d) Optical flow calculated by the TV .-segment method. (e) Active

contours of segmentation calculated by the TV .-segment method.

that the TV .-segment method interpolated the disclosed regions
(the upper part of head and the rear of the car) better than the
smooth method. Comparing the zoomed-in subcontours, we can
easily establish that the segmentation process has successfully
identified the “covered” regions (the bottom part of the head)
and the “disclosed” regions (the top part of the head and the
rear of the car).

To evaluate our image sequence interpolation method, we
performed an experiment based on human visual perception.

We choose four data sets, i.e., Face, Earth, Bunny, and Dragon,
from  ftp://graphics.tu-bs.de/pub/public/people/lipski/stimuli/
(see Fig. 6). The data set Face is composed of 60 images, and
the other data sets are composed of around 120 images each.
We compare our methods with other seven existing methods
from [31] and [15] for which interpolation results have been
available, and we designed the experiment in the following
way: Among every four images, two middle images are taken
out, and using the first and last ones, the missing images will be
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Fig. 10. Frame 16 calculated by the (a) blend, (b) optical-flow, (c) full, (d) multiscale, and (e) TV .-segment methods.

TABLE I
NORMALIZED SCORE OF EVERY ALGORITHM APPLIED ON EVERY DATA SET
AND AVERAGE OF ALL SCORES OF EVERY ALGORITHM

Face Earth Bunny Dragon average
original 090 0.86 0.88 0.96 0.90
blend 024 0.14 0.32 0.26 0.24
opticalflow 0.01  0.02 0.02 0.02 0.02
nofeathering 049  0.50 0.35 0.50 0.46
nooptim 026 0.32 0.39 0.21 0.29
full 0.50 0.53 0.42 0.51 0.49
multiscale 0.82 0.82 0.84 0.82 0.82
TVe-segment 0.77  0.82 0.78 0.73 0.78

TABLE II

INTERPOLATION ERROR OF EVERY ALGORITHM APPLIED ON EVERY DATA SET
AND AVERAGE OF ALL INTERPOLATION ERRORS OF EVERY ALGORITHM

Face Earth Bunny Dragon average
blend 373 418 2.41 3.49 345
opticalflow 311 425 2.36 3.38 3.28
nofeathering 229 215 1.95 2.58 2.24
nooptim .72 1.52 1.40 2.02 1.67
full 172 1.52 1.40 2.02 1.67
multiscale 131 0.75 1.16 1.97 1.31
TVc-segment 2.08 191 1.65 2.40 1.99

interpolated (i.e., we performed a subsampling with respect to
time by the factor of 3). Now, each participant in our experiment
is shown two interpolation results side by side and is asked
which one looks better. For each of the scenes, we compare all
seven interpolation methods and the ground truth against each
other (only comparing methods A and B, excluding self-com-
parison and the reverse comparison method B to method A).
This yields a total of 4 - (8 - 7/2) = 112 trials per participant.
We denote by N the number of participants, and in each trial,

the perceptually better image gets one point. After all trials, we
divide the score of every algorithm of each data set by 7N and
all data sets by 35N to get the normalized score for every data
set and all data sets. The range of the score is in [0, 1], and a
higher score stands for better human visual perception.

In total, 17 participants took part in this experiment, and
in Table I, we can observe that the so-called “multiscale” and
TV.-segment methods visual perceptually perform better than
the other methods.

In Table II, we also evaluate the interpolation error (IE)
measure [17], i.e., the root-mean-square difference between the
ground-truth image ugT and the interpolated image w, i.e.,

W=

N M

IE = ﬁ > (ulwiyyy) — uar(wiy;)*

i=1 j=1

where M x N is the image size. Observe that the TV_-seg-
ment method does not outperform the “nooptim” and “full”
methods with respect to the IE, which is in contrast with the
results from the visual perception. The IE measure does not
reveal human visual perception due to two reasons. First, the
human eyes are sensitive for the shocks that are the common
drawbacks of the optical-flow, no-feathering, and full methods
(see, e.g., Fig. 10), and also sensitive for the ghosting effects,
which are characterized by the blend method [cf. Figs. 8(a) and
10(a)]. Second, there are indeed many ways to interpolate, but
this does not mean that all results are possible ground-truth data.
In addition to the experimental results, we present examples of
interpolated images in Figs. 7-10. Again, our method correctly
identifies the regions (the white in the associated contours im-
ages) in which occlusions occur (in data set Earth/Bunny on the
left-/right-hand side of the objects where parts of the objects
“disappear,” respectively).
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Fig. 11. (a) Frame 54. (b) Frame 55 calculated by the TV -segment method. (c) Frame 56 calculated by the TV, -segment method. (d) Frame 57. (e) Optical flow
calculated by the TV.-segment method. (f) Active contours calculated by the TV .-segment method.

In the last example, we consider the real video sequence
“Plant”? (see Fig. 11) consisting of 124 images. Again, we
performed a temporal downsampling by a factor of 3 and inter-
polated the missing frames. Comparing our interpolated images
and the given images, we can conclude that our interpolation
method also works well with real video sequences.

All these routines in the segregation loop were implemented
in MATLAB on a Windows 7 with Intel Core i7 Q720 central
processing unit. The computational time is strongly related to
the image size and the iteration number Nioop, €.8., using a 641
x 480 image in the finest resolution level of 0 applying five
iterations, the elapsed time is 780 s, and in one level coarser
resolution with the same iteration number, the elapsed time is
always approximately four times less. In all experiments, we
used the iteration numbers [20, 20, 20, 20, 5] from the coarsest
level to the finest level in the hierarchical processing.

VI. CONCLUSION AND OUTLOOK

The approach to image sequence interpolation based on the
optical flow in the framework of optimal control avoids shocks
and ghosting effects. The improvement by TV, flow and seg-
mentation has shown that it is able to produce more natural in-
terpolation for human visual perception. However, as already
explained in [18], this method has a limited application if the il-
lumination of the object varies in time, since we have only con-
sidered the transport equation with the right-hand side of 0. This
means that the external illumination variation, e.g., light or flash,
does not come to consideration.

In the further work, it might be interesting to introduce an-
other control f in the right-hand side of the transport equation to
simulate the external illumination variation. However, since the
movement of an object can be also generated as a drastic change
“illumination,” it might be difficult to obtain meaningful results
for both b and f.

2Also available at ftp://graphics.tu-bs.de/pub/public/people/lipski/stimuli/.
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