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1 Introduction

An image can be considered as an application of a domain of R2 (or R3 in the case of three-dimensional
images) with values in a subset of R (or R3 for color images). Many algorithms of edge detection, shape
recognition, denoising, are based partial differential models.

In this short lecture we consider the Eulerian representation of region of interest in images. We
begin by giving the main principles of the Eulerian description of interfaces and what we can derive
from it as geometrical information. Then we develop few algorithms of active contours that were
developed up to last years. We will explicit numerical tools involved in the implementation of these
algorithms.

2 Segmentation methods using level-set in image analysis

2.1 Introduction

To represent an interface defining two moving regions of interest, several representations are possible.
In particular, we may consider a parametrization of the interface (for simplicity assume that this is
a curve Γt). We call it a Lagrangian setting: let γ : [0,M ] × [0, T ] → γ(r, t) a parametrization of
Γt advected by the continuous medium velocity γ(r, t) = X(t; γ0(r)) or equivalently the solution of
differential system: {

∂tγ(r, t) = u(γ(r, t), t), r ∈ [0,M ], t ∈]0, T ]

γ(r, 0) = γ0(r), r ∈ [0,M ].
(1)

In practice, to capture a region, we will therefore consider a discretization of [0,M ] given by (ri)i=0...N

and then move γ(ri, t) to enclose the target region. The fact that the spacing between the points may
vary as a result of the curve deformation could cause over or under-sampling. Moreover, with this
representation, handling topology changes of the contour can be cumbersome.

2.2 Level set framework

We now change our representation of the interface to circumvent the pitfalls of the Lagrangian rep-
resentation. We represent Γt, that we from now on consider as closed1 by introducing an auxiliary
function φ : Ω× [0, T ]→ R such that

Γt = {x ∈ Ω, φ(x, t) = 0}.
The bounded domain delimited by Γt, that we refer as the region interior, is Ω−t = {x ∈ Ω, φ(x, t) <
0} and its exterior as Ω+

t = {x ∈ Ω, φ(x, t) > 0}. As φ(γ(r, t), t) = 0 on [0,M ] × [0, T ], and
∂tγ = u(γ, t), we get differentiating with respect to t

∂tφ(γ(r, t), t) + u(γ(r, t), t) · ∇φ(γ(r, t), t) = 0

The Level Set method [?, ?] corresponds to consider a initial function φ0 representing Γ0 and to look
for a function φ which verifies the transport equation on the whole domain:

{
∂tφ+ u · ∇φ = 0 on Ω×]0, T [

φ = φ0 on Ω× {0}.
(2)

Usually φ0 is chosen as a signed distance to interface:

φ0(x) =

{
−dist(x,Γ0) if x belongs to the interior of Γ0

dist(x,Γ0) if x belongs to the exterior of Γ0

1It is possible to remove this assumption with the addition of another auxiliary function.

2



Remark 1 1. It is remarkable that a smooth function of time and space can be a very singular
evolution curve: melting of curves, or splitting of a curve. Is that we have added a dimension to
the problem, and in this new space, these situations are not unique! The price to pay is to work
with this additional dimension: instead of a 1D discretization, we will consider a discretization
of the whole space. Nevertheless, we will see that there are methods to restrict the calculations to
an area near the contour (narrow-band) .

2. The level-set method gives a direct way of knowing if a point in space is inside or outside of the
contour, by inspecting the sign of φ at this point. This is generally not trivial with the other
representation. On the contrary, access the coordinates of points of the contour is not at all
natural, and we’ll try to get around this need as possible.

With the choice of sign of φ0 above fact, that we will now assume systematically, the outer normal
to the area enclosed by Γt and its curvature are expressed at each of its points by

n(x) =
∇φ
|∇φ| κ(x) = div

∇φ
|∇φ|

The general proof can be found in the book [?], pages 354 to 357. We justify the formula of curvature
in two dimensions. Consider a regular parametrization s→ γ(s) of Γt such that, by following the curve
along the direction of ∂sγ, we have (φ < 0) on our left. The curvature is expressed in terms of the
parameterization as

κ =
[∂sγ, ∂ssγ]

|∂sγ|3

By differentiating the identity φ(γ(s)) = 0 we have ∂sγ ·∇φ = 0. Differentiating ∂sγ · ∇φ|∇φ| = 0 we have

∂ssγ ·
∇φ
|∇φ| + ∂sγ ·

(
D

[ ∇φ
|∇φ|

]
∂sγ

)
= 0

As ∂sγ ⊥ ∇φ
|∇φ| we have due to the chosen curve orientation, [∂sγ,

∇φ
|∇φ| ] < 0, therefore

[∂sγ, ∂ssγ] = |∂sγ|∂sγ ·
(
D

[ ∇φ
|∇φ|

]
∂sγ

)

In dimension two, if we denote as ∇×φ the curl of phi φ, obtained by a +π
2 rotation to the vector ∇φ,

the corresponding tangent vector is

τ(x) =
∇×φ
|∇φ|

Therefore
κ =

∇×φ
|∇φ|

(
D

[ ∇φ
|∇φ|

] ∇×φ
|∇φ|

)

The prof is achieved by the following lemma that the reader could prove (S1 is the unit circle).

Lemma 1 Let u, v : Ω ⊂ R2 → S1, of class C1, such that u · v = 0 on Ω. Then [Du]v · v = div u.

2.3 Set operations expressed with level set functions

Let two bounded open sets Ω1 and Ω2. If we already have two level set functions to capture those
sets, say φ1 and φ2, such that φi < 0 in Ωi, then min(φ1, φ2) is a level set function for Ω1 ∪ Ω2 and
max(φ1, φ2) for Ω1∩Ω2. As φi is a level set function for Ωi, −φi plays the same role for Ωc

i . Therefore,
max(−φ1, φ2) is a level set function for Ω2 \ Ω1. At last min(max(−φ1, φ2),max(φ1,−φ2)) is a level
set function for the symmetric difference Ω1∆Ω2.

3



2.4 General principles of image segmentation and active contours

Consider an image (grayscale to start), that is a function defined on the domain Ω, I : Ω → R. To
identify areas in this image, a first idea is to look at the histogram of the gray levels of the latter, and
segment the image into functions thresholds on the histogram. We will therefore consider as belonging
to the same region of interest pixels having an intensity within a certain band. The problem with this
type of segmentation is that it does not produce in general a connected region, and is very sensitive
to noise. We therefore seek methods of segmentation sufficiently robust to noise and low contrast
images. Among the existing segmentation methods, except the threshold described above, one can list
the active contours, deformable models, growth models ... We are interested in this part in the active
contour models, of which we present the general principles.

It amounts to move a curve (or a surface for a 3D image) so that it fits the contours of the object
that we want to identify in the image. In order to move Γt, in Lagrangian representation we usually
seek to minimize a functional of the following kind:

F (γ(t)) = α

∫ M

0
|∂rγ(r, t)|dr + β

∫ M

0
|∂2
rrγ(r, t)|2dr − λ

∫ M

0
|∇I(γ(r, t))|2dr, (3)

where α ≥ 0, β ≥ 0, λ > 0 are parameters. The first two measure the smoothness of the curve, the last
will move the γ curve to areas of strong gradients of the image.

To write the dynamics of movement, rather than writing a derivative with respect to the curve,
using our velocity field we try to move the curve γ so as to minimize F as t increases. On has

d

dt
F (γ(t)) = dFγ(t)(∂tγ(t)) = dFγ(t)(u(γ(t))) = ∇F (γ(t)) · u(γ(t))

We see that choosing u(γ) = −ρ∇F (γ(t)), where ρ > 0 is a descent parameter, will produce decreasing
F . This is the "snakes" method introduced by Kass, Witkin, Terzopoulos in 1988. The general principle
of these methods is to identify regions that are defined by areas of high variations the gradient of the
image. Furthermore, if there are multiple objects to be captured, if the starting area encircles these
objects, then the contour will always gather the union of these objects and therefore, as is, this method
can not capture multiple objects. This is a serious caveat of the method. More generally we consider
a decreasing function g : [0,+∞)→ R+ such that g(r)→ 0 for r →∞, for instance g(s) = 1

1+s2
. We

consider here the case β = 0 and therefore the energy boils to:

F (γ(t)) = α

∫ M

0
|∂rγ(r, t)|dr + λ

∫ M

0
g(|∇I(γ(r, t))|)dr, (4)

A remark raised after a few years in the development of the method is the dependence on parameteriza-
tion of the curve. Noticed by Caselles, Kimmel and Sapiro in 1997, that is explained by the fact that if
we define a new parameterization of the curve by a change of variable r = φ(s) with φ : [0, L]→ [0,M ],
φ′ > 0 we get: ∫ M

0
|∂rγ(r, t)|dr =

∫ L

0
|∂sγ(φ(s), t)|ds

which does not depend on parametring, whereas
∫ M

0
g(|∇I(γ(r, t))|)dr =

∫ L

0
g(|∇I(γ(φ(s), t))|)φ′(s)ds

Which is completely dependent on the parametrization (nb: if you take a square in the first term of
energy as in the articles cited, this term also depends on the setting). The trick used by Caselles,
Kimmel and Sapiro is simply to write an energy considering the metric of the curve itself, so that it is
invariant under change of parametrization:

∫ M

0
g(|∇I(γ(r, t))|)|∂rγ(r, t)|dr =

∫ L

0
g(|∇I(γ(φ(s), t))|)|∂rγ(φ(s), t)|ds
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5.1 Active contours 271

(a) (b)

Figure 5.2 Snakes (Kass, Witkin, and Terzopoulos 1988) c� 1988 Springer: (a) the “snake
pit” for interactively controlling shape; (b) lip tracking.

where the line term attracts the snake to dark ridges, the edge term attracts it to strong gradi-
ents (edges), and the term term attracts it to line terminations. In practice, most systems only
use the edge term, which can either be directly proportional to the image gradients,

Eedge =
X

i

�krI(f(i))k2, (5.4)

or to a smoothed version of the image Laplacian,

Eedge =
X

i

�|(G� ⇤ r2I)(f(i))|2. (5.5)

People also sometimes extract edges and then use a distance map to the edges as an alternative
to these two originally proposed potentials.

In interactive applications, a variety of user-placed constraints can also be added, e.g.,
attractive (spring) forces towards anchor points d(i),

Espring = kikf(i)� d(i)k2, (5.6)

as well as repulsive 1/r (“volcano”) forces (Figure 5.2a). As the snakes evolve by minimiz-
ing their energy, they often “wiggle” and “slither”, which accounts for their popular name.
Figure 5.2b shows snakes being used to track a person’s lips.

Because regular snakes have a tendency to shrink (Exercise 5.1), it is usually better to
initialize them by drawing the snake outside the object of interest to be tracked. Alterna-
tively, an expansion ballooning force can be added to the dynamics (Cohen and Cohen 1993),
essentially moving each point outwards along its normal.

To efficiently solve the sparse linear system arising from snake energy minimization, a
sparse direct solver (Appendix A.4) can be used, since the linear system is essentially penta-
diagonal.4 Snake evolution is usually implemented as an alternation between this linear sys-

4 A closed snake has a Toeplitz matrix form, which can still be factored and solved in O(N) time.

FIGURE 1: Snakes (Kass, Witkin, and Terzopoulos 1988)

The general form of the energy is now:

F (γ(t)) =

∫ M

0
g(|∇I(γ(r, t))|)|∂rγ(r, t)|dr, (5)

since indeed, energy (4) may be expressed under this form by replacing g by α+ λg. Let us compute
the flow generated by such an energy. After some elementary calculations, we find:

d

dt
F (γ(t)) =

∫ M

0
[g(∇I(γ))κn+ (∇(g(∇I))(γ) · n)n] · u(γ)dr (6)

where n is the outward normal, which gives as evolution of γ :

∂tγ = −ρ[g(∇I(γ))κn+ (∇(g(∇I))(γ) · n)n]. (7)

The application of a discretized version of this algorithm to follow lips motion, in the original article of
1988, is depicted on figure 1. Problems could occur on sharp edges, see figure 2. Algorithm is sensitive
to noise, and cannot detect more than one object, see figure 3.

We now translate this expression to Eulerian coordinates. First is a curve is evolving with normal
velocity V , that is:

∂tγ = V n

then the transport quartions ont the level set function reads:

∂tφ+ V n · ∇φ = 0

which as n is a unit vector field collinear to ∇φ, gives

∂tφ = −V |∇φ|

Thus the equation on φ becomes (for ρ = 1) :

∂tφ = g(∇I)|∇φ|div
∇φ
|∇φ| +∇(g(∇I)) · ∇φ
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FIGURE 2: Snakes, case with sharp edges

FIGURE 3: Snakes, case with two objects and noise
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2.5 Active contours and level set: one step beyond

2.5.1 Computation of volume and surface integrals

The implicit representation can be used to compute approximate surface and volume integrals.

Lemma 2 Let φ : Rd → R be Lipschitz on Rd and g : Rd → R integrable. Assume there exists η0 > 0
such that ess inf |φ|<η0 |∇φ| > 0. Then for η ∈]0, η0[,

∫

|φ(x)|<η
g(x)dx =

∫ η

−η

∫

φ(x)=ν
g(x)|∇φ|−1dσdν

Proof. In [?], proposition 3 page 118, it is shown under such assumptions that

d

ds

(∫

φ>s
g(x)dx

)
= −

∫

φ=s
g|∇φ|−1dσ a.e. s

The above result easily follows by setting s = −t and taking φ and −φ in this formula, and then
summing up the two obtained identities after integrating them between 0 and η.

A less rigorous but more intuitive proof amounts to write the volume element in a neighborhood
of a point x as dx = dσ × dh, where dh is along the normal ∇φ|∇φ| to the level-set of φ through x, and
by remarking that

ν ± dν := φ(x± dh ∇φ|∇φ|) = φ(x)± dh|∇φ|+O(dh2)

from which we get dx = |∇φ|−1dσdν. �
From now on we assume the following regularity for φ:

(Hφ) ∀t ∈ [0, T ],∀f ∈ Cc(Rn), s→
∫

{|φ(x,t)|<s}
f(x)dx est C1 au voisinage de s = 0

Let M(Rd) be the space of bounded measures on Rd, that is, of linear continuous forms on the
space of bounded continuous functions. Then we have the following:

Proposition 1 Let r → ζ(r) be a continuous cut-off function, that is with support in [−1, 1], and such
that r → 1

εζ( rε) converges to δ0 inM(R). Then under assumption (Hφ), when ε→ 0,

1

ε
ζ

(
φ

ε

)
|∇φ|⇀ δ{φ=0} inM(Rd).

Proof. For a continuous g(r), we have by assumption,

lim
ε→0

∫

R

1

ε
ζ
(r
ε

)
g(r)dr = g(0).

Applying this, for f ∈ Cc(Rd), to
g(r) =

∫

{φ=r}
fdσ.

We have
lim
ε→0

∫

R

1

ε
ζ
(r
ε

)∫

{φ=r}
fdσdr =

∫

{φ=0}
fdσ,

so that
lim
ε→0

∫

R

∫

{φ=r}

1

ε
ζ

(
φ

ε

)
fdσdr =

∫

{φ=0}
fdσ.
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As 1
εζ(φε ) is vanishing outside |φ| < ε, using Lemma 2, we get

∫

R

∫

{φ=r}

1

ε
ζ

(
φ

ε

)
fdσdr =

∫ ε

−ε

∫

{φ=r}

1

ε
ζ

(
φ

ε

)
fdσdr =

∫

|φ(x)|<ε

1

ε
ζ

(
φ

ε

)
f |∇φ|dx

=

∫

Rd

1

ε
ζ

(
φ

ε

)
f |∇φ|dx

which means finally, for all f ∈ Cc(Rd),

lim
ε→0

∫

Rd

1

ε
ζ

(
φ

ε

)
|∇φ|f(x)dx =

∫

{φ=0}
f(x)dσ.

�
We therefore hereby justified that δ{φ=0} can be approximated by |∇φ|1εζ

(
φ
ε

)
for small ε.

Remark 2 This approximation has however to be handled with care. Indeed it amounts to replace a
purely geometrical object, namely the measure supported on a curve, δ{φ=0} (which depends only on
this curve but not on the chosen φ to capture it), by a function that does depend on the scale of φ
(for instance {2φ = 0} or {φ = 0} are the same curve, whereas |2∇φ|1εζ

(
2φ
ε

)
6= |∇φ|1εζ

(
φ
ε

)
). This

is the origin of some numerical subtleties in the Level Set method. We will see how redistancing and
renormalization give answer to this problem.

2.5.2 General level set formulation of a gradient based active contour method

Thanks to the above approximation, an Eulerian expression of the (approximated) active contour
energy (5) can be written as

Fε(φ) =

∫

Ω
g(|∇I|)1

ε
ζ(
φ

ε
)|∇φ|dx

Let us compute, independently of the dimension, the functional derivative of this energy. Using the
transport equation verified by φ and equation verified by |∇φ|,

d

dt
Fε(φ) =

∫

Ω
g(|∇I|)

[
1

ε2
ζ ′(
φ

ε
)∂tφ|∇φ|+

1

ε
ζ(
φ

ε
)∂t|∇φ|

]
dx

=

∫

Ω
g(|∇I|)

[
1

ε2
ζ ′(
φ

ε
)(−u · ∇φ)|∇φ|+ 1

ε
ζ(
φ

ε
)
∂t∇φ · ∇φ
|∇φ|

]
dx

=

∫

Ω
g(|∇I|)

[
−u · ∇(

1

ε
ζ(
φ

ε
))|∇φ|

]
− div

(
g(|∇I|) ∇φ|∇φ|

1

ε
ζ(
φ

ε
)

)
∂tφdx

where we performed an integration by parts to get the last expression. Still using the transport
equation, ∂tφ = −u · ∇φ so that

d

dt
Fε(φ) =

∫

Ω
g(|∇I|)

[
−u · ∇(

1

ε
ζ(
φ

ε
))|∇φ|+ |∇φ|∇(

1

ε
ζ(
φ

ε
)) · u

]

+ g(|∇I|) div

( ∇φ
|∇φ|

)
1

ε
ζ(
φ

ε
)∇φ · u+∇[g(|∇I|)] · ∇φ|∇φ|

1

ε
ζ(
φ

ε
)∇φ · udx

Finally, we got

d

dt
Fε(φ) =

∫

Ω

[
g(|∇I|) div

( ∇φ
|∇φ|

)
+∇[g(|∇I|)] · ∇φ|∇φ|

] ∇φ
|∇φ| · u|∇φ|

1

ε
ζ(
φ

ε
)dx

which is the level translation of (6), up to the approximation of the surface measure given by |∇φ|1εζ(φε )dx.
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Remark 3 In the case where curvature energy has to be taken into account, the level-set formalism
can of course be used and is also dimension independent. Actually the curvature energy can take the
form

Gε(φ) =

∫

Ω
G(κ(φ))|∇φ|1

ε
ζ(
φ

ε
)dx

where the more standard case corresponds to G(r) = 1
2r

2. As above, the time derivative of this curvature
energy corresponds to the power of curvature forces Hε(x, t), since we have

d

dt
Gε(φ) = dGε(φ)(∂tφ) = dGε(φ)(−u · ∇φ) = −

∫

Ω
Hε(x, t) · udx. (8)

After a lengthy computation, we obtain:

Hε(x, t) = div

[
−G(κ(φ))

∇φ
|∇φ| +

1

|∇φ|P∇φ⊥
(
∇[|∇φ|G′(κ(φ))]

)] 1

ε
ζ(
φ

ε
)∇φ.

2.6 Region-based methods

2.6.1 Idea

In the above methods, one drawback is that the image gradient is involved, which could be a problem
for noisy images. Other methods are built on the principle of capturing regions instead of capturing
contours delimiting them. The pioneering method of Chan & Vese (2001) is based on the minimization
of the so-called Mumford-Shah functional:

EMS(u,Γ) =
∑

i

∫

Ωi

|u− I|2dx+ µ|Γ|+ ν

∫

Ω\Γ
|∇u|2dx.

A minimizer of such an energy is therefore regular outside Γ, and try fit the image on the regions Ωi,
while minimizing the length of Γ. Starting from that energy, Chan & Vese proposed the following
level-set formulation by looking for a minimizer in the class of piecewise constant functions, therefore
canceling the last term:

ECV (φ, c1, c2) =

∫

Ω
|c1 − I|2H(

φ

ε
) + |c2 − I|2(1−H(

φ

ε
))dx+ µ

∫

Ω
|∇φ|1

ε
ζ(
φ

ε
)dx

First note that deriving with respect to ci immediately gives that at optimum,

c1 =

∫
Ω I(x)H(φε )dx
∫

ΩH(φε )
, c2 =

∫
Ω I(x)(1−H(φε ))dx
∫

Ω 1−H(φε )

and the gradient flow associated to this energy can be obtained by:

∂tφ =
[
µκ(φ)− (I− c1)2 + (I− c2)2

]
|∇φ|1

ε
ζ(
φ

ε
)

with c1, c2 obtained as above. Typically we take a function 1
εζ(φε ) > 0 to allow creation of new regions.

Some generalizations are the following: first we can seek unknown patterns instead of simple
constants. This amounts to consider functions instead of constants. We define

ECV (φ, u1, u2) =

∫

Ω
|u1(x)− I|2H(

φ

ε
) + |u2(x)− I|2(1−H(

φ

ε
))dx+ µ

∫

Ω
|∇φ|1

ε
ζ(
φ

ε
)dx

+ ν

∫

Ω
|∇u1|2H(

φ

ε
)dx+ ν

∫

Ω
|∇u2|2(1−H(

φ

ε
))dx.
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which gives as Euler-Lagrange equations:

u2 − I = ν∆u2 on φ > 0, u1 − I = ν∆u1 on φ < 0

with homogeneous Neumann boundary condition on φ = 0 for the ui. The the descent algorithm gives:

∂tφ =
[
µκ(φ)− ν − (I− u1)2 + (I− u2)2 − ν|∇u2|2 + ν|∇u1|2

]
|∇φ|1

ε
ζ(
φ

ε
)

Another extension is to capture more than two regions. Does this need to introduce as much level-set
functions as regions ? Hopefully not, due to the four colors theorem. This states that each partition
of R2 in regions can be colored with 4 colors, so that to contiguous regions are not painted with the
same color. This can be implemented with two level-set functions using the combination of signs of
those two functions. We therefore introduce

E(φ1, φ2, u11, u12, u21, u22) =

∫

Ω
|u11(x)− I|2H(

φ1

ε
)H(

φ2

ε
) + |u12(x)− I|2(1−H(

φ1

ε
))H(

φ2

ε
)

+ |u21(x)− I|2(1−H(
φ2

ε
))H(

φ1

ε
) + |u22(x)− I|2(1−H(

φ1

ε
))(1−H(

φ2

ε
))dx

+ ν

∫

Ω
|∇u11|2H(

φ1

ε
)H(

φ2

ε
) + |∇u12|2(1−H(

φ1

ε
))H(

φ2

ε
) + |∇u21|2(1−H(

φ2

ε
))H(

φ1

ε
)

+ |∇u22|2(1−H(
φ1

ε
))(1−H(

φ2

ε
))dx+ µ

∫

Ω
|∇φ1|

1

ε
ζ(
φ1

ε
) + |∇φ2|

1

ε
ζ(
φ2

ε
)dx

and we generalize the above descent algorithm.

Exercise 1 Compute the gradient flow associated to that energy and write the active contour algorithm
associated to it.

2.6.2 Tests

In figure 6, the Chan-Vese algorithm shows its ability to reach a steady state in the two-objects noisy
test case. In the more complicated three objects noisy case, which is a difficult test case for contouring
method, it perform also well. However, when it comes to contour regions where the image intensity is
not constant, the Chan-Vese algorithm can be fooled (see figure 7 where two regions of are localized by
assuming a mean value, giving as bad segmentation. To localize region with possibly varying intensity,
the extension to patterns presented above is a better choice. This is even more visible on a nosier image
which depicts a spiral. The original Chan-Vese algorithm find two regions which ignore the natural
segmentation, while Li algorithm behaves quite well (figure 8).
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FIGURE 4: Region-based contouring of (Chan-Vese, 2001). The two-objects and three-objects cases.

FIGURE 5: Region-based contouring of (Chan-Vese, 2001) / Extension to the pattern matching case
(Li et al).
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FIGURE 6: Region-based contouring of (Chan-Vese, 2001) / Extension to the pattern matching case
(Li et al).
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