Deduction and Fractions

Dominique Duval

Grenoble, November 26., 2009
Categorical Computer Science 2009
Introduction

A deduction rule is a fraction

Deduction is the composition of fractions

Conclusion
Motivations

The semantics of computational effects

Cf. the talk by Jean-Guillaume Dumas: a framework for dealing with the order of evaluation of the arguments in a language with effects

Fact 1. Syntax, models, proofs,... : this is logic...

Fact 2. Categories and limit sketches provide tools for dealing with the semantics and with the syntax.

Fact 3. A logic is, essentially, a (bi)category of fractions.
What is a logic?

A logic should have

- a syntax
 which are the sentences of interest?

- a notion of models
 what is the meaning of each sentence?

- a system for proofs
 how can a sentence be inferred from another one?

In this talk we focus on proofs.
In this talk

A deduction rule, written AS a fraction

\[
\frac{\mathcal{H}}{C}
\]

actually IS a fraction (in the categorical sense)

\[
\frac{C}{\mathcal{H}}
\]
Propositional logic

Hilbert calculus, restricted to the connector “⇒”.

Syntax. Propositions (formulas) are made of symbols \(p, q, \ldots \) and a binary operation “⇒”.

Models. Given a set of propositions \(\Sigma \), a model (interpretation) of \(\Sigma \) associates to each proposition \(p \in \Sigma \) a truth value \(\nu(p) \in \{0, 1\} \) in accordance with the truth table for “⇒”:

\[
\begin{array}{ccc}
A & B & A \Rightarrow B \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

Deduction rules. modus ponens

\[
\begin{array}{c}
A \\
A \Rightarrow B \\
\hline
B \\
\end{array}
\]

and two rules with “empty” premisses

\[
A \Rightarrow (B \Rightarrow A) \quad (A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))
\]
Outline

Introduction

A deduction rule is a fraction

Deduction is the composition of fractions

Conclusion
Theories and specifications: two categories

For a given logic:

- A **theory** Θ is a saturated class of sentences, called **theorems**: every sentence derived from Θ with the rules of the logic is in Θ.
- A **specification** Σ is a class of sentences, called **axioms**: new sentences may be derived from Σ with the rules of the logic (generally).

This provides two **categories**:

- **T** for theories
- **S** for specifications
Theories and specifications: two adjoint functors

For a given logic:

- Every theory Θ can be seen as a (huge) specification $R\Theta$.
- Every specification Σ generates a theory $L\Sigma$ using the rules of the logic.

This provides two adjoint functors:

\[
\begin{array}{c}
S \xleftarrow{\perp} L \xrightarrow{R} T
\end{array}
\]

In addition, every theory Θ is saturated:

\[LR\Theta \cong \Theta\]
Propositional logic: theories

A propositional theory Θ is:

- a set $\Theta(F)$ of formulas
- a subset $\Theta(T)$ of true formulas
- a binary operation “\Rightarrow”: $\Theta(F)^2 \rightarrow \Theta(F)$
 which satisfies the rules: for all p, q, r in $\Theta(F)$:
 - if $p, p \Rightarrow q \in \Theta(T)$ then $q \in \Theta(T)$
 - $p \Rightarrow (q \Rightarrow p) \in \Theta(T)$
 - $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r)) \in \Theta(T)$

Example. The theory of booleans \mathcal{B}:

$\mathcal{B}(F) = \{0, 1\}$, $\mathcal{B}(T) = \{1\}$,
$\mathcal{B}(\Rightarrow)(1, 0) = 0$, otherwise $\mathcal{B}(\Rightarrow)(p, q) = 1$
Propositional logic: specifications

A propositional specification Σ is:
- a set $\Sigma(F)$ of formulas
- a subset $\Sigma(T)$ of true formulas
- a partial binary operation “\Rightarrow”: $\Sigma(F)^2 \rightarrow \Sigma(F)$

Example.

$\Sigma_0(F) = \{p, q\}$, $\Sigma_0(T) = \emptyset$, $q = (p \Rightarrow p)$.
Propositional logic is an adjunction

- **R : T → S** is the inclusion
- **L : S → T** generates theorems from axioms

A specification Σ_0:

$$\Sigma_0(F) = \{p, q\}, \Sigma_0(T) = \emptyset, q = (p \Rightarrow p).$$

The models of Σ_0:

- ν_0: $\nu_0(p) = 0, \nu_0(q) = 1$.
- ν_1: $\nu_1(p) = 1, \nu_1(q) = 1$.

The theory $L\Sigma_0$:

$$L\Sigma_0(F) = \{p, q, p \Rightarrow q, \ldots\}, L\Sigma_0(T) = \{q, \ldots\}.$$

$q \in L\Sigma_0(T)$ because $p \Rightarrow p$ can be deduced, using the propositional rules.

The models of Σ_0 are the morphisms of theories $L\Sigma_0 \rightarrow B$.
A diagrammatic logic is functor with a full and faithful right adjoint

So, a logic is

- a category of theories T
- a category of specifications S
- a forgetful functor $R : T \rightarrow S$
- a generating functor $L : S \rightarrow T$

which form an adjunction

$$
S \xrightarrow{R} T \xleftarrow{L} S
$$

with R full and faithful, i.e., $L R \Theta \cong \Theta$ for every theory Θ
Entailments and fractions

With respect to a logic $L : S \to T$

- An entailment

$\Sigma \xrightarrow{\tau} \Sigma'$

is a morphism $\tau : \Sigma \to \Sigma'$ in S such that $L\tau$ is invertible in T.

- A fraction $\frac{\sigma}{\tau}$ is a cospan in S made of a morphism σ (the numerator) and an entailment τ (the denominator)

$\Sigma \xrightarrow{\sigma} \Sigma' \xleftarrow{\tau} \Sigma_1$

Then $L\left(\frac{\sigma}{\tau}\right) = (L\tau)^{-1} \circ L\sigma$ in T.

\[
\begin{array}{ccc}
L\Sigma & \xrightarrow{L\sigma} & L\Sigma' \\
& & \xleftarrow{L\tau} L\Sigma_1 \\
& & \downarrow_{L(\tau)^{-1}} \\
& & L(\frac{\sigma}{\tau})
\end{array}
\]
“The” theorem

Gabriel and Zisman (1967)
Calculus of Fractions and Homotopy Theory. Ch. 1.

Remark. Every theory Θ is $\Theta = L\Sigma$ for some specification Σ.

Remark. In general, a morphism of theories $\theta : L\Sigma \to L\Sigma_1$ is not $\theta = L\sigma$ for a morphism of specifications $\sigma : \Sigma \to \Sigma_1$.

(because Σ_1 is “too small”)

Theorem. Every morphism of theories $\theta : L\Sigma \to L\Sigma_1$ is $\theta = L(\frac{\sigma}{\tau})$ for some fraction $\frac{\sigma}{\tau} : \Sigma \to \Sigma_1$.

Corollary. (Up to equiv.,) T is the category of fractions of S with denominators the entailments.
What is a deduction rule?

With respect to a logic $L : S \rightarrow T$

Definition.

A rule $\frac{H}{C}$ is a fraction $\frac{c}{h} : C \rightarrow H$

This definition includes both elementary rules and derived rules (or proofs) (the distinction is provided by the syntax of L).

According to [GZ68], the rules are the morphisms of theories, expressed as fractions.
The modus ponens rule

\[
\frac{A \land A \Rightarrow B}{B}
\]

- **Static.** A theory Θ is a saturated set of theorems. Let Θ be a theory with theorems p and $p \Rightarrow q$. Then theorem q is also in Θ.

- **Dynamic.** A specification Σ is a set of axioms, which generates a theory $L\Sigma$. Let Σ be a specification with axioms p and $p \Rightarrow q$. Then the specification Σ' made of Σ and the axiom q is equivalent to Σ, i.e., $L\Sigma = L\Sigma'$.
The modus ponens fraction

Propositional specifications:
\[\mathcal{H} : \mathcal{H}(F) = \{ A, B, A \Rightarrow B \}, \quad \mathcal{H}(T) = \{ A, A \Rightarrow B \} \]
\[\mathcal{C} : \mathcal{C}(F) = \{ B \}, \quad \mathcal{C}(T) = \{ B \} \]
\[\mathcal{H}' : \mathcal{H}'(F) = \{ A, B, A \Rightarrow B \}, \quad \mathcal{H}'(T) = \{ A, B, A \Rightarrow B \} \]

The inclusions of \(\mathcal{H} \) and \(\mathcal{C} \) in \(\mathcal{H}' \) are morphisms of specifications and \(h \) is an entailment

\[
\begin{array}{ccc}
\mathcal{H} & \xrightarrow{h} & \mathcal{H}' \\
\downarrow & & \downarrow \\
\mathcal{C} & \xleftarrow{c} & \mathcal{H}'
\end{array}
\]

\(\mathbf{L}h \) is an isomorphism of theories, \(\mathbf{L}(\frac{c}{h}) = \mathbf{L}h^{-1} \circ \mathbf{L}c \)
Rules are fractions

<table>
<thead>
<tr>
<th>RULES</th>
<th>FRACTIONS</th>
<th>numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{H}, \mathcal{C} : \text{rules})</td>
<td>(\mathcal{H}, \mathcal{C} : \text{fractions})</td>
<td>(2, 3 \in \mathbb{Z})</td>
</tr>
<tr>
<td>(\frac{\mathcal{H}}{\mathcal{C}})</td>
<td>(\mathcal{H} \xrightarrow{\mathcal{H}} \mathcal{H}' \xleftarrow{\mathcal{C}} \mathcal{C})</td>
<td>(\frac{3}{2} \left(\frac{3}{2} \neq \frac{6}{4} \right)) “syntactically”</td>
</tr>
<tr>
<td>(\frac{\mathcal{H}}{\mathcal{C}})</td>
<td>(\mathcal{LH} \xrightarrow{\mathcal{LH}} \mathcal{LH}' \xleftarrow{\mathcal{LC}} \mathcal{LC})</td>
<td>(\frac{3}{2} \in \mathbb{Q} \left(\frac{3}{2} = \frac{6}{4} \right))</td>
</tr>
</tbody>
</table>
Outline

Introduction

A deduction rule is a fraction

Deduction is the composition of fractions

Conclusion
The deduction process is a succession of deduction steps.

A deduction step:

- **Input.** A rule $\frac{H}{C}$, a specification Σ, an instance i of H in Σ.

- **Output.** The instance j of C in Σ which corresponds to “applying $\frac{H}{C}$ to i”.
What is a deduction step?

With respect to a logic $L : S \rightarrow T$

Definition.

An instance of \mathcal{H} in Σ is a fraction $i : \mathcal{H} \rightarrow \Sigma$

Definition.

The step applying a rule $p : C \rightarrow \mathcal{H}$ to an instance $i : \mathcal{H} \rightarrow \Sigma$ of \mathcal{H} in Σ is the composition of fractions $i \circ p : C \rightarrow \Sigma$
Deduction process

Since a deduction step is a composition, the deduction process is (essentially) a succession of compositions...

... combined with colimits of specifications for grouping several hypotheses in a unique one...

... resulting in the usual tree-like representation of the deduction.
Applying modus ponens

The specification $\Sigma_0 : \Sigma_0(F) = \{p, q\}$, $\Sigma_0(T) = \emptyset$, $q = (p \Rightarrow p)$ generates the theorem q.

The last step in the proof is an application of modus ponens:

$$
\frac{(p \Rightarrow q) \Rightarrow q}{q}
$$

\[
\begin{array}{c}
\{A, A \Rightarrow B\} \xrightarrow{h} \{A, A \Rightarrow B, B\} \xleftarrow{c} \{B\}
\end{array}
\]

\[
\begin{array}{c}
\{A, A \Rightarrow B\} \xrightarrow{A \rightarrow (p \Rightarrow q)} \{B\}
\end{array}
\]

\[
\begin{array}{c}
\{A, A \Rightarrow B\} \xrightarrow{B \rightarrow q} \{B\}
\end{array}
\]

\[
\begin{array}{c}
\{(p \Rightarrow q) \Rightarrow q, p \Rightarrow q\} \xrightarrow{} \{(p \Rightarrow q) \Rightarrow q, p \Rightarrow q, q\}
\end{array}
\]

\[
\begin{array}{c}
\emptyset \xleftarrow{} \{(p \Rightarrow q) \Rightarrow q, p \Rightarrow q, q\}
\end{array}
\]
Introduction

A deduction rule is a fraction

Deduction is the composition of fractions

Conclusion
Conclusion

- The category of fractions is the quotient of a bicategory, and bicategories are technically difficult...
 Cf. the talk by Pawel Sobocinski.

- More about models, syntax, etc...
 - D.D. *How to combine diagrammatic logics*.

- More examples
 - Jean-Guillaume Dumas, D.D., Jean-Claude Reynaud. *Cartesian effect categories are Freyd-categories*.
 - Cesar Dominguez, D.D. *A parameterization process as a categorical construction*.