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Abstract

We investigate the spectral asymptotic properties of the stationary dynamical
system ξt = ϕ(T t(X0)). This process is given by the iterations of a piecewise
expanding map T of the interval [0, 1], invariant for an ergodic probability
µ. The initial state X0 is distributed over [0, 1] according to µ and ϕ is a
function taking values in R. We establish a strong law of large numbers and
a central limit theorem for the integrated periodogram as well as for Fourier
transforms associated with (ξt : t ∈ N). Several examples of expanding maps
T are also provided.
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1 Introduction.

Over the last decade, the statistical properties of chaotic processes have been deeply

investigated in order to modalize complex systems [1], [2], [15]. More precisely,

chaotic dynamical systems such as expanding maps of the interval have been sug-

gested to capture the complexity of packet traffic [15] or to analyse the measurements

of communication traffic from a wide variety of sources [2]. Chaos is the phenomenon

by which low order nonlinear dynamical systems exhibit complex, seemingly random

behavior. One can notice that trajectories of chaotic systems are very often fractal

in nature, hence they can be used as convenient generators of fractal structures. In

this paper, we shall focus our attention on the strictly stationary dynamical system

given, for all t ∈ N, by

ξt = ϕ(T t(X0)) = ϕ(Xt) (1)
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where T is a piecewise expanding map [19] of the interval [0, 1], invariant for an

ergodic probability µ. The initial state X0 is distributed over [0, 1] according to

µ and ϕ is a function from [0, 1] to R. Under suitable assumptions on T and

ϕ, we shall establish a strong law of large numbers and a central limit theorem

for the integrated periodogram associated with (ξt : t ∈ N). We shall also prove

similar results for Fourier transforms of (ξt : t ∈ N). We will apply our results

to several parametric Lasota-Yorke maps [19] which are piecewise expanding maps

of the interval [0, 1]. It is well known [6, 8, 17, 20, 21] that such maps admit a

unique absolutely continuous invariant measure. One can find few papers dealing

with the problem of the nonparametric estimation of the invariant density [7, 9, 25].

Our purpose is now to analyse the spectral asymptotic properties of such chaotic

processes. We shall assume that the process (ξt : t ∈ N) is zero mean and we denote

by (γ(t)) its covariogram defined, for all t ≥ 0, by

γ(t) = Eµ[ξ0ξt]. (2)

The spectral density of (ξt : t ∈ N) is given, for all λ in the torus T = [−π, π[, by

f(λ) =
1

2π

∑

t∈Z
γ(|t|)e−itλ. (3)

If the maps ϕ and T are both continuous and (γ(t)) goes to zero at a polynomial rate

of order > 2, Lopes and Lopes [22] have proven the convergence in distribution sense

of the empirical periodogram to the spectral density f . One can observe that the

periodogram is evaluated on the discrete Fourier frequencies. More recently, Cha-

zottes, Collet and Schmitt [7] studied the convergence in L2 of the empirical spectral

distribution for a wide class of dynamical systems, including piecewise expanding

maps of the interval [0, 1] satisfying Devroye’s inequality.

Our approach is totally different. We first propose central limit theorem for

the integrated periodogram of (ξt : t ∈ N), in the spirit of the original work of

Rosenblatt [26]. This result only holds under several conditions on the stationary

process and on its covariogram. We propose projective criteria, expressed with

projective coefficients in the style of Gordin, under which assumptions for the central

limit theorem are satisfied. We next introduce the time reversal process (Yt : t ∈ N)

associated with the underlying process (Xt : t ∈ N). The process (Yt : t ∈ N) is a

Markov chain [4]. One can check that (X0, X1, · · · , Xt) shares the same distribution

as (Yt, Yt−1, · · · , Y0). Via Markov arguments, we show that the projective criteria are

fulfilled for our reversed process (ϕ(Yt) : t ∈ N). Finally, by use of similar techniques,

we deduce from [30] the asymptotic behavior of Fourier transforms of (ξt : t ∈ N)

defined, for a given real-valued function g and for all θ ∈ R, by

Sn(θ) =
n∑

t=1

g(ξt)e
itθ.
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The paper is organized as follows. In Section 2, we give the central limit theorem

for the integrated periodogram of (ξt : t ∈ N). Section 3 is devoted to the time

reversal Markov chain (Yt : t ∈ N) associated with (Xt : t ∈ N). Coefficients

of dependence, very useful to measure the dependence structure of the underlying

process (Xt : t ∈ N), are given in Section 4. We also propose projective criteria

under which the assumptions of the central limit theorem are satisfied. By use

of (Yt : t ∈ N), we show that the projective criteria are fulfilled so that we get

the central limit theorem for the integrated periodogram of (ξt : t ∈ N). Several

examples of expanding maps T whose reversed process satisfies the projective criteria

are provided in Section 5. Section 6 is devoted to the asymptotic results concerning

the Fourier transforms of (ξt : t ∈ N) while Section 7 deals with the non-stationary

case. Finally, all the technical proofs are postponed to Section 8.

2 Integrated periodogram

We shall now define the integrated periodogram associated with (ξt : t ∈ N)

given by (1) and investigate its asymptotic properties. Assume in the sequel that

Eµ[ξ4
0 ] is finite. The fourth cumulants of (ξt : t ∈ N) are given, for all (r, s, t) ∈ Z3,

by

κ(r, s, t) = Eµ[ξ0ξrξsξt] − Eµ[ξ0ξr]Eµ[ξsξt] − Eµ[ξ0ξs]Eµ[ξrξt] − Eµ[ξ0ξt]Eµ[ξrξs].

By stationarity of the process (ξt : t ∈ N), those cumulants may be defined over Z3.

It is natural [26, Corollary 1 page 59] to assume that

γ =
∑

t∈N
γ(t)2 < +∞ and κ =

∑

(r,s,t)∈Z3

|κ(r, s, t)| < +∞. (4)

The empirical periodogram associated with (ξt : t ∈ N) is defined, for all λ ∈ T, by

In(λ) =
1

2πn

∣∣∣∣∣

n∑

t=1

ξte
−itλ

∣∣∣∣∣

2

. (5)

Let (γn(t)) be the empirical covariances given, for all 0 ≤ t ≤ n − 1, by

γn(t) =
1

n

n−t∑

k=1

ξkξt+k

and γn(t) = 0 if t ≥ n. One can easily see from (5) that, for all λ ∈ T

In(λ) =
1

2π

∑

t∈Z
γn(|t|)e−itλ. (6)

It is well known that In(λ) is not a good estimator of f(λ). It is more appropriate

to make use of the integrated periodogram

In(g) =

∫ π

−π

g(λ)In(λ) dλ (7)
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where g belongs to the set of functions

G =
{

g : T → R, 2π-periodic and continuous with g ∈ L2(T)
}

.

We shall prove the almost sure convergence of In(g) to

I(g) =

∫ π

−π

g(λ)f(λ) dλ

together with a central limit theorem which makes use of the bispectral density

function

f4(λ, µ, ν) =
1

(2π)3

∑

(r,s,t)∈Z3

κ(r, s, t)e−i(rλ+sµ+tν) .

Theorem 1 For all t ∈ N,

lim
n→∞

γn(t) = γ(t) a.s.

In addition, assume that (4) holds and, for all t ∈ N,

∞∑

s=1

(E[(E[ξ0ξs|ξt+s] − γ(t))2])1/2 < ∞ (8)

and

σ2(t) = E[(ξ0ξt − γ(t))2] + 2
∞∑

s=1

E[(ξsξt+s − γ(t))(ξ0ξt − γ(t))] > 0. (9)

Then, for all t ∈ N,
√

n(γn(t) − γ(t))
L−→ N (0, σ2(t)). (10)

Furthermore, for all s, t ∈ N, set

σ(s, t) = E[(ξ0ξs − γ(s))(ξ0ξt − γ(t))] + 2
∞∑

r=1

E[(ξrξt+r − γ(t))(ξ0ξs − γ(s))].

Then, for all d ≥ 1 and for arbitrary distinct integers t1, t2, · · · , td ∈ N, we have

{
√

n(γn(ti) − γ(ti))}1≤i≤d
L−→ Nd(0,Γ) (11)

where Γ is the positive definite covariance matrix given by Γ = (σ(ti, tj))1≤i,j≤d.

Theorem 2 For all g ∈ G,

lim
n→∞

In(g) = I(g) a.s. (12)

In addition, under assumptions (4), (8) and (9), we have the finite dimensional

convergence of {
√

n(In(g) − I(g)), g ∈ G} to the zero mean Gaussian process

{Z(g), g ∈ G} with covariance given, for all g1, g2 ∈ G by

Γ(g1, g2) = 4π

∫ π

−π

g1(λ)g2(λ)f 2(λ)dλ+ 2π

∫ π

−π

∫ π

−π

g1(λ)g2(µ)f4(λ,−µ, µ)dλdµ.

Proof. The proof of Theorems 1 and 2 are postponed to Section 8. !
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3 The associated Markov chain

For the process (ξt : t ∈ N), the randomness only enters when setting the initial

state. The analogy with classical process is therefore clearer when considering the

reversed process, for which randomness enters progressively at each step. Starting

from this remark of Barbour & al. [4], we introduce the time reversal process

(Yt : t ∈ N) associated with the underlying process (Xt : t ∈ N) given by (1).

First of all, let L be the operator from L1([0, 1]) to L1([0, 1]) given, for all functions

h ∈ L1([0, 1]) and k ∈ L∞([0, 1]), by the identity

∫ 1

0

L(h)(x)k(x) dx =

∫ 1

0

h(x)k(T (x)) dx.

The operator L is called the Perron-Frobenius operator of T . Assume that the

probability distribution µ is absolutely continuous with respect to the Lebesgue

measure. Denote by fµ the density function associated with µ. Let I∗ ⊂ [0, 1] be

the support of µ and choose a version of fµ such that fµ > 0 on I∗ and fµ = 0

otherwise. One can observe that it is possible to choose L such that L(fµh)(x) =

L(fµh)(x)1Ifµ(x)>0. Let K be the Markov kernel associated to T given, for all x ∈
[0, 1], by

K(h)(x) =
L(fµh)(x)

fµ(x)
1Ifµ(x)>0 + µ(h)1Ifµ(x)=0. (13)

The time reversal process (Yt : t ∈ N) associated with (Xt : t ∈ N) is a stationary

Markov chain with invariant distribution µ and transition kernel K. It is easy to

check [4] that (X0, X1, · · · , Xt) shares the same distribution as (Yt, Yt−1, · · · , Y0).

Hence, to prove Theorem 1, we study the asymptotic behavior of

√
n

(
1

n

n−t∑

k=1

ϕ(Yk)ϕ(Yt+k) − γ(t)

)
.

Consequently, it is necessary to go further in the study of the reversed process

(Yt : t ∈ N). Denote by BV ([0, 1]) the set of functions

BV ([0, 1]) =
{

h : [0, 1] → R such that h ∈ L1([0, 1]), ‖Dh‖ < +∞
}

where ‖Dh‖ = |Dh|([0, 1]) stands for the total variation of the distributional deriva-

tive of h on [0, 1]. Of course, if h is absolutely continuous, Dh is a function which

coincides with the pointwise derivative h′ of h. The set BV ([0, 1]) is a Banach space

endowed with the norm ‖h‖v = ‖h‖1+‖Dh‖. In many interesting cases, the spectral

analysis of the Perron-Frobenius operator L in the Banach space BV ([0, 1]) can be

achieved by use of Ionescu-Tulcea and Marinescu theorem [6], [18]. Assume that 1

is a simple eigenvalue of L and that the rest of the spectrum is contained in a closed

disk of radius strictly smaller than one. Then, one can find an unique T -invariant

absolutely continuous probability distribution µ whose density function fµ belongs
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to BV ([0, 1]), such that all the powers of the Kernel K can be decomposed for all

x ∈ [0, 1], as

Kn(h)(x) =
Ψn(fµh)(x)

fµ(x)
1Ifµ(x)>0 + µ(h)1Ifµ(x)=0 (14)

with Ψ(fµ) = 0 and

‖Ψn(h)‖v ≤ cρn‖h‖v (15)

for some 0 < ρ < 1 and c > 0. In addition, assume that

d =

∥∥∥∥
1

fµ
1Ifµ>0

∥∥∥∥
v

< ∞ (16)

It was proven by Dedecker and Prieur [10] that, for any functions h ∈ BV ([0, 1])

and k ∈ L1([0, 1]),

|Cov(h(X0), k(Xn))| ≤ an‖k(Xn)‖1‖h‖v (17)

where an = αρn with α = 2cd(‖Dfµ‖ + 1). We refer to the paper of Broise [6]

for examples of dynamics T satisfying assumption (15) and to the paper of Morita

[24] for sufficient conditions implying assumption (16). Two examples of piecewise

expanding maps are detailed in Section 5.

4 Coefficients of dependence

In order to check that the assumptions of Theorem 1 are satisfied, we introduce

coefficients of dependence which allow us to measure the dependence structure of

the reversed process (ϕ(Yt) : t ∈ N). For dynamical systems, and in particular for

piecewise expanding maps of the interval, such coefficients of dependence are closely

related to covariance inequalities.

Definition 1 Let (Zt) be a stationary sequence of zero mean real-valued random

variables. Let F = (Ft) be the filtration given by Ft = σ(Z0, Z1, · · ·Zt) and denote

by Et the conditional expectation with respect to Ft. For any integers 0 ≤ i < j and

k ≥ 0, let Γi,j,k be the set of multiintegers (t1, t2, · · · tj) such that 0 ≤ t1 ≤ · · · ≤ ti
and ti + k ≤ ti+1 ≤ · · · ≤ tj. For m ∈ {1, 2}, set

θi,j,m(k) = sup
(t1,...,tj)∈Γi,j,k

‖Zt1 · · ·ZtiEti [Zti+1 · · ·Ztj − E[Zti+1 · · ·Ztj ]]‖m. (18)

In the case where m = 1, these coefficients have been first introduced [11] to derive

Esseen’s mean central limit theorems for dependent sequences.

We now give projective criteria using these dependence coefficients under which

the central limit theorem for the integrated periodogram of a stationary process

with mean zero holds.
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Theorem 3 Assume that the reversed process (ϕ(Yt) : t ∈ N) associated to the pro-

cess (ξt : t ∈ N) given by (1) satisfies the three following conditions (a), (b) and (c).

Then, (4) and (8) hold true for (ξt : t ∈ N).

(a)
∞∑

k=0

θ1,2,1(k) < +∞,

(b) For any 1 ≤ i < j ≤ 4,
∞∑

k=0

kj−2θi,j,1(k) < +∞,

(c)
∞∑

k=1

θ0,2,2(k) < +∞.

Proof. The proof of Theorem 3 is postponed to Section 8. !

Theorem 4 Assume (15) and (16) hold. Moreover, suppose that ϕ is in BV ([0, 1]).

Then, assumptions (a), (b) and (c) of Theorem 3 are satisfied.

Proof. The proof is given in Section 8. !

Remark. Under assumptions (15) and (16), we know from Theorems 3 and 4 that

(4) and (8) hold true for (ξt : t ∈ N). But we didn’t say anything about assumption

(9) of Theorem 1. The case

σ2(t) = E[(ξ0ξt − γ(t))2] + 2
∞∑

s=1

E[(ξsξt+s − γ(t))(ξ0ξt − γ(t))] = 0

is a degenerate case. The result of Theorem 1 still holds but the limit is a Gaussian

law with variance zero. Let us give a simple situation under which we can prove

that we are not in the degenerate case. We know from [26, Chapter III] that the

limiting variance in Theorem 1 satisfies

σ2(t) = lim
n→+∞

1

n

n∑

k=0

n∑

l=0

Cov(ξkξk+t, ξlξl+t). (19)

Let us endow BV ([0, 1]) with the scalar product defined, for all h, k in BV ([0, 1]),

by

< h, k >µ=

∫ 1

0

h(x)k(x)fµ(x)dx.

For all x ∈ [0, 1] and t ≥ 0, set ht(x) = ϕ(x)ϕ(T t(x)) − γ(t). Relation (19) can be

rewritten as

σ2(t) = lim
n→+∞

1

n

n∑

k=0

n∑

l=0

<ht(T
k), ht(T

l)>µ=
∑

k∈Z
<ht(T

k), ht >µ .
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Hence, it follows from Proposition 7.1 of [6] that, for a piecewise expanding map T ,

if the associated partition is countably infinite, and if assumption (16) is satisfied,

then the limit σ2(t) is strictly positive as soon as the function ϕ is not a constant.

The proof relies on Ionescu-Tulcea and Marinescu Theorem on the spectral decom-

position of the Perron-Frobenius operator L associated to T .

5 Piecewise expanding maps

Several examples of expanding maps T satisfying conditions (15) and (16) are

given in [6, page 11]. We shall now focus our attention on two specific transforma-

tions. On the one hand, for some integer β ≥ 2 and for all x ∈ [0, 1], let

Tβ(x) = βx − [βx]. (20)

This map is commonly called β-transformation. The invariant probability µ is the

Lebesgue measure on [0, 1]. A straightforward calculation leads to

E[X0] =
1

2
and Var(X0) =

1

12
.

Consequently, for all x ∈ [0, 1], we choose ϕ(x) = x− 1/2. It is not hard to see that

for all t ≥ 0

γ(t) =
1

12βt
.

Hence, if we set

σ2 =
β2 − 1

12
,

we deduce via (3) that the spectral density associated with (20) is given, for all

λ ∈ T, by

f(λ) =
σ2

2π(1 + β2 − 2β cos(λ))
.

We can estimate the unknown parameter β by the Yule-Walker estimator

β̂n =
γn(0)

γn(1)
=

∑n
k=1 ξ

2
k∑n−1

k=1 ξkξk+1

.

It immediately follows from Theorem 1 that β̂n −→ β a.s. Furthermore, we have

the decomposition

√
n(β̂n − β) =

√
n

γn(1)

(
γn(0) − γ(0) − γ(0)

γ(1)
(γn(1) − γ(1))

)
.

Consequently, we infer from (11) together with Slutsky’s lemma that

√
n(β̂n − β)

L−→ N (0, τ 2)
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where

τ 2 = (12β)2(σ2(0) + β2σ2(1) − 2βσ(0, 1)).

On the other hand, consider the transformation given, for some 0 < a < 1 and for

all x ∈ [0, 1], by

Ta(x) =






x

a
if 0 ≤ x < a,

1 − x

1 − a
if a ≤ x < 1.

(21)

As before, the invariant probability µ is the Lebesgue measure on [0, 1] so that we

also take, for all x ∈ [0, 1], ϕ(x) = x− 1/2. One can easily see [23, page 26] that for

all t ≥ 0

γ(t) =
1

12
(2a − 1)t.

If

σ2 =
a(1 − a)

6
,

the spectral density associated with (21) is given, for all λ ∈ T, by

f(λ) =
σ2

2π(1 − 2a(1 − a) + (2a − 1) cos(λ))
.

We can estimate the unknown parameter a by the Yule-Walker estimator

ân =
1

2

(γn(1)

γn(0)
+ 1

)
=

1

2

(∑n−1
k=1 ξkξk+1∑n

k=1 ξ
2
k

+ 1
)
.

We immediately deduce from Theorem 1 that ân −→ a a.s. In addition, one can

observe that

√
n(ân − a) =

√
n

2γn(0)

(
γn(1) − γ(1) − γ(1)

γ(0)
(γn(0) − γ(0))

)
.

Hence, we derive from (11) together with Slutsky’s lemma that

√
n(ân − a)

L−→ N (0, τ 2)

where

τ 2 = 36(σ2(1) + (2a − 1)2σ2(0) − 2(2a − 1)σ(0, 1)).

6 Fourier transforms

In this section, we investigate the asymptotic behavior of Fourier transforms of

(ξt : t ∈ N) given, for all g ∈ BV ([0, 1]) and all θ ∈ R, by

Sn(θ) =
n∑

t=1

g(ξt)e
itθ.
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We shall assume that the function ϕ belongs to BV ([0, 1]) and that the expanding

map T satisfies (15) and (16). In addition, we suppose that Eµ[g(ξ0)] = 0 and

Eµ[g2(ξ0)] is finite. It is obvious to realize that Sn(θ) shares the same distribution

as

Σn(θ) =
n∑

t=1

g(ϕ(Yt))e
itθ

where (Yt : t ∈ N) is the associated Markov chain of the underlying process (Xt : t ∈
N). Consequently, we can deduce from [30], which deals with Fourier transforms of

stationary and ergodic Markov chains, the asymptotic behavior of Sn(θ).

Corollary 1 Assume that (15) and (16) are satisfied. Assume moreover that g is

in BV ([0, 1]) and satisfies Eµ[g(ξ0)] = 0 and Eµ[g2(ξ0)] is finite. Then, for almost

all θ ∈ R, there exists 0 ≤ σ(θ) < ∞ such that

Sn(θ)√
n

L−→ N (0, σ2(θ)Id2) (22)

In addition, for almost all pairs (θ,λ) ∈ R2, Sn(θ)/
√

n and Sn(λ)/
√

n are asymptot-

ically independent. Finally, for almost all θ ∈ R, the spectral density of the process

(g(ξt) : t ∈ N) is given by fg(θ) = σ2(θ)/π.

Corollary 2 Assume that (15) and (16) are satisfied. Assume moreover that g

is in BV ([0, 1]) and satisfies Eµ[g(ξ0)] = 0 and Eµ[g2(ξ0)] is finite. Then, for all

θ ∈ [0, 2π[ there exists hθ(ξ0, ξ1) ∈ L2([0, 1]) such that

n∑

t=1

eitθ
(

E[g(ξt)|ξ1] − E[g(ξt)|ξ0]
)

(23)

converges in L2([0, 1]) to hθ(ξ0, ξ1), as n goes to infinity. In addition, we also have

E[|E[Sn(θ)|ξ0]|2] = o(n). Moreover,

(i) if θ += 0, π,
Sn(θ)√

n
L−→ N (0, σ2(θ)Id2) (24)

where σ2(θ) = E[h2
θ(ξ0, ξ1)]/2;

(ii) if θ = 0 or π,
Sn(θ)√

n
L−→ N (0, τ 2(θ))

with τ 2(θ) = 2σ2(θ).

Proof. The proofs of Corollaries 1 and 2 are postponed to Section 8. !
Remark. In the last case θ = 0 or π, the result is the central limit theorem stated

for example in [6] with limiting variance given by

τ 2(θ) =
∞∑

k=0

< g(ϕ(T k)), g(ϕ) >µ .
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7 On the non-stationary case

We shall now focus our attention on the asymptotic behavior of the

non-stationary process (ξ′t : t ∈ N) given, for all t ∈ N, by

ξ′t = ϕ(T t(X ′
0)) = ϕ(X ′

t) (25)

where T is a piecewise expanding map of the interval [0, 1] and ϕ ∈ BV ([0, 1]). The

initial state X ′
0 is not distributed over [0, 1] according to µ but X ′

0 has a probabil-

ity density function p ∈ BV ([0, 1]). From a statistical point of view, it is indeed

interesting to carry out the asymptotic analysis of functionals which do not depend

on the unknown invariant density function fµ. In many situations, it is possible to

prove the convergence of the non-stationary case to the stationary one. To be more

precise, let us recall the following inequality [8, 20, 29] on the Perron-Frobenius

operator L in the case where the dynamical system is generated by a Lasota-Yorke

map T . One can find some 0 < δ < 1 and c > 0 such that, for any n ≥ 0

‖Lnp − fµ‖∞ ≤ cδn. (26)

This result allows us to start from any initial state X ′
0 with probability density

function p ∈ BV ([0, 1]). Let us explain in details what happens in the case of the

periodogram. We know from Section 2 that for any t ≥ 0

Sn(t) =
√

n

(
1

n

n−t∑

k=1

ξkξk+t − γ(t)

)
L−→ N (0, σ2(t)). (27)

We want to show that

S ′
n(t) =

√
n

(
1

n

n−t∑

k=1

ξ′kξ
′
k+t − γ(t)

)
L−→ N (0, σ2(t)). (28)

Denote by H the set of bounded differentiable functions h : R → R with continuous

and bounded derivative. The set H is dense in Cb(R). Hence, it is only necessary to

prove that, for any h ∈ H and t ≥ 0, the difference

∆n(h, t) = E
[
h(Sn(t)) − h(S ′

n(t))
]

goes to zero as n tends to infinity. Let h ∈ H and denote θ = ‖h‖∞ and ϑ = ‖h′‖∞.

For any 1 ≤ l ≤ n − t, set

Sn,l(t) =
1√
n

l∑

k=1

ξkξk+t and S ′
n,l(t) =

1√
n

l∑

k=1

ξ′kξ
′
k+t.

As ϕ ∈ BV ([0, 1]), ϕ is bounded by some constant M > 0. Hence, both |Sn,l(t)|
and |S ′

n,l(t)| are bounded by M2l/
√

n. Furthermore, if Rn,l(t) = Sn(t) − Sn,l(t) and

R′
n,l(t) = S ′

n(t) − S ′
n,l(t), we can deduce from the mean-value theorem that

∣∣∣h(Sn(t)) − h(Rn,l(t))
∣∣∣ ≤

ϑM2l√
n

and
∣∣∣h(S ′

n(t)) − h(R′
n,l(t))

∣∣∣ ≤
ϑM2l√

n
.
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Consequently, for any 1 ≤ l ≤ n − t, we obtain that

|∆n(h, t)| ≤
∣∣E[h(Rn,l(t)) − h(R′

n,l(t))]
∣∣ +

2ϑM2l√
n

.

However,

E[h(Rn,l(t)) − h(R′
n,l(t))] =

∫ 1

0

h(Zn,l(x, t))(fµ(x) − Llp(x)) dx

where

Zn,l(x, t) =
√

n

(
1

n

n−t−l∑

k=1

ϕ(T k(x))ϕ(T k+t(x)) − γ(t)

)
.

Therefore, we infer from (26) that, for any 1 ≤ l ≤ n − t

|∆n(h, t)| ≤ θcδl +
2ϑM2l√

n
.

Finally, as 0 < δ < 1, we can conclude that, for l large enough, ∆n(h, t) goes to zero

as n tends to infinity. !

8 Proofs

8.1 Proof of Theorems 1 and 2

For all t ∈ N, we immediately deduce from the ergodic theorem that γn(t)

converges almost surely to γ(t). Then, the strong law (12) clearly follows from

Levy’s theorem [3, Theorem 2.2. page 106]. The finite dimensional central limit of

Theorem 1 is a direct application of [26, Theorem 3 page 58] applied to the reversed

process (ϕ(Yt) : t ∈ N) which is an ergodic strictly stationary sequence with mean

zero. Assume that the process (ξt : t ∈ N) satisfies assumptions (4), (8) and (9).

For all t ∈ N, (X0, X1, · · · , Xt) shares the same distribution as (Yt, Yt−1, · · · , Y0).

Consequently, assumptions (4) and (9) hold for the process (ξt : t ∈ N), they also

hold for the reversed process (ϕ(Yt) : t ∈ N). Moreover assumption (8) yields

∞∑

s=1

(E[(E[ϕ(Ys)ϕ(Yt+s)|ϕ(Y0)] − γ(t))2])1/2 < +∞ .

Hence, assumptions in [26, Theorem 3 page 58] are satisfied for the reversed process

(ϕ(Yt) : t ∈ N), which implies the finite dimensional central limit theorem for

(ϕ(Yt) : t ∈ N) and therefore for (ξt : t ∈ N). Finally, we complete the proof of

Theorem 2 by use of [26, Corollary 2 page 61]. !
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8.2 Proof of Theorem 3

First of all, we shall prove that the projective criterion (a) implies that γ is finite.

For all t ≥ 0, we have

|γ(t)| = |E[ξ0ξt]| = |E[ϕ(Y0)ϕ(Yt)]| .

Moreover,

|E[ϕ(Y0)ϕ(Yt)]| = |E[ϕ(Y0)E0[ϕ(Yt)]]| ≤ ‖ϕ(Y0)E0[ϕ(Yt)]‖1 ≤ θ1,2,1(t).

Therefore, if (a) holds,

∞∑

t=0

|γ(t)| ≤
∞∑

t=0

θ1,2,1(t) < +∞

which immediately implies that γ is finite. Next, let us prove that (a) and (b) lead to

κ finite. To prove that the sum κ of the fourth cumulants of the process (ξt : t ∈ N)

is finite, we prove that the sum τ of the fourth cumulants of the reversed process

(ϕ(Yt) : t ∈ N) is finite. For this, we shall proceed by induction as in [12] for strong

mixing processes. It is necessary to introduce some notations. For n ≥ 1 and n real

valued random variables A1, . . . , An, define

cum(A1, . . . , An) =
∑

(−1)k−1(k − 1)!E[Πi∈ν1Ai] · · ·E[Πi∈νk
Ai] (29)

where ν1, . . . , νk is a partition of (1, 2, . . . , n) and one sums over all these partitions.

Moreover, let ν be a subset of {1, . . . , n} and define Cν = cum(Ai, i ∈ ν). We have

from [26, Chapter II] that

E[A1 . . . An] =
∑

Cν1 . . . Cνk
(30)

where one sums over all partitions ν1, . . . νk of (1, 2, . . . , n). As (ϕ(Yt) : t ∈ N) is

centered, we get that for all (r, s, t) ∈ N3, τ(r, s, t) = cum(ϕ(Y0),ϕ(Yr),ϕ(Ys),ϕ(Yt)).

For 2 ≤ p ≤ 4, let

Cp =
∑

0=t1≤...≤tp

|c(t1, . . . , tp)|

where c(t1, . . . , tp) = cum(ϕ(Yt1), . . . ,ϕ(Ytp)). We already saw that

C2 =
∞∑

t=0

|γ(t)| < +∞.

Our purpose is to show by induction that, under (a) and (b), C4 is finite. For p ≥ 3

and 0 = t1 ≤ . . . ≤ tp, let r = tm+1 − tm where

m = inf
{

1 ≤ m < p / tm+1 − tm = max(t2 − t1, . . . , tp − tp−1)
}

.
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One can observe that |c(t1, . . . , tp)| is bounded by
∣∣E[ϕ(Yt1) . . .ϕ(Ytp)] − E[ϕ(Yt1) . . .ϕ(Ytm)]E[ϕ(Ytm+1) . . .ϕ(Ytp)]

∣∣ + R (31)

with

R ≤
∑

k (=1

1

k
|E[Πi∈ν1ϕ(Yi)]| . . . |E[Πi∈νk

ϕ(Yi)]|

where ν1, . . . , νk is a partition of (t1, . . . , tp) with k += 1. By use of (30), one can find

some constant M(p) > 0 such that

R ≤ M(p)
∑

k (=1

1

k
max |Cν1 . . . Cνk

| (32)

where the maximum is taken over all partitions ν1, . . . , νk of (t1, . . . , tp) with k += 1.

It follows from (18) that
∣∣E[ϕ(Yt1) . . .ϕ(Ytp)] − E[ϕ(Yt1) . . .ϕ(Ytm)]E[ϕ(Ytm+1) . . .ϕ(Ytp)]

∣∣ ≤ θm,p,1(r). (33)

Hence, we can deduce from (31) to (33) that

Cp ≤
∞∑

r=0

rp−2θm,p,1(r) + M(p)
∑

k (=1

1

k

∑

p1+...+pk=p

Cp1 . . . Cpk
.

The first right hand term is finite because of (b). In addition, the second right hand

term is also finite by induction as all pi < p. We can conclude that C4 and τ are

finite. It remains to prove that (c) implies condition (8). This implication clearly

follows from the fact that for all s, t ≥ 0

E[ξ0ξs|ξt+s] = E[ϕ(Ys)ϕ(Yt+s)|ϕ(Y0)]

and

(E[(E[ϕ(Ys)ϕ(Yt+s)|ϕ(Y0)] − γ(t))2])1/2 ≤ θ0,2,2(s)

which completes the proof of Theorem 3. !

8.3 Proof of Theorem 4

In order to prove Theorem 4, assume that ϕ ∈ BV ([0, 1]) and let C = ‖Dϕ‖.
Denote by BV1([0, 1]) the subset of all functions h ∈ BV ([0, 1]) whose bounded

variation norm is smaller than 1, that is ‖Dh‖ ≤ 1. As ϕ is bounded by some

constant M > 0, it follows from (18) that for any integers 0 ≤ i < j, k ≥ 0 and for

any t = (t1, t2, · · · tj) ∈ Γ =Γ i,j,k and m ∈ {1, 2},

θi,j,m(k) = sup
t∈Γ

‖ϕ(Yt1) · · ·ϕ(Yti)Eti [ϕ(Yti+1) · · ·ϕ(Ytj ) − E[ϕ(Yti+1) · · ·ϕ(Ytj)]]‖m

≤ sup
t∈Γ

‖ϕ(Yt1) · · ·ϕ(Yti)Eti [ϕ(Yti+1) · · ·ϕ(Ytj ) − E[ϕ(Yti+1) · · ·ϕ(Ytj)]]‖∞

≤ M i sup
t∈Γ

‖Eti [ϕ(Yti+1) · · ·ϕ(Ytj ) − E[ϕ(Yti+1) · · ·ϕ(Ytj)]]‖∞

≤ M iCj−iΦj−i(k) (34)
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with Fti = σ (ϕ(Y0), · · · ,ϕ(Yti)) ⊂ Gti = σ(Y0, · · · , Yti),

Φj−i(k) = max
1≤l≤j−i

sup
ti+k≤ti+1≤···≤ti+l

φ(Gti , Yti+1 , . . . , Yti+l
),

φ(Gti , Yti+1, . . . , Yti+l
) = ‖∆il‖∞

∆il = sup

∣∣∣∣∣EGti

[ l∏

s=1

(ϕs(Yti+s) − E[ϕs(Yti+s)])
]
− E

[ l∏

s=1

(ϕs(Yti+s) − E[ϕs(Yti+s)])
]∣∣∣∣∣

where one takes the supremum over all functions ϕ1, . . . ,ϕl ∈ BV1([0, 1]) and where

EGti
is the conditional expectation with respect to Gti . Under assumptions (15) and

(16), we have for any h ∈ BV ([0, 1]),

‖DKn(h)‖ = ‖DKn(h − h(0))‖ ≤ 2d‖Ψn(fµ(h − h(0)))‖v,

≤ 4αρn‖Dh‖

where α = 2cd(‖Dfµ‖ + 1). Hence, we find using exactly the same lines as [10,

Lemma 1] that for all k ≥ 0

Φ3(k) ≤ 2α(1 + β + β2)ρk (35)

with β = 4α. For any integers 0 ≤ i < j, one can deduce from the definition of Φj−i

that, for all k ∈ N,

Φ1(k) ≤ Φ2(k) ≤ Φ3(k) .

Therefore, under assumptions (15) and (16) of Theorem 4, it clearly follows from

(34) and (35) that for 0 ≤ i < j ≤ 4, m ∈ {1, 2}, the coefficients θi,j,m(k) decrease

exponentially fast to zero as k tends to infinity. Hence the three conditions of The-

orem 3 are satisfied, which concludes the proof of Theorem 4. !

8.4 Proof of Corollary 1

Corollary 1 immediately follows from Theorem 1 and Proposition 2 of [30]. More

precisely, we have to check that condition (2) in [30] is satisfied, so that

∞∑

t=1

1

t
E[(E[g(ϕ(Yt))|ϕ(Y0)])

2] < ∞.

For all t ≥ 0, we have

E
[
(E[g(ϕ(Yt))|ϕ(Y0)])

2
]
≤ θ2

0,1,2(t).

In addition, under (15) and (16), θ0,1,2(t) goes exponentially fast to zero as t tends

to infinity. Hence, condition (2) in [30] is satisfied. !
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8.5 Proof of Corollary 2

For θ = 0, π, Corollary 2 follows from the classical central limit theorem for

partial sums. It is stated for example in [6]. For θ += 0, π, Corollary 2 can be proven

by use of Theorem 2 of [30]. More precisely, we have to check that condition (7) in

[30] is satisfied, so that

∞∑

t=1

‖E[g(ϕ(Yt))|ϕ(Y1)] − E[g(ϕ(Yt))|ϕ(Y0)]‖2 < +∞ .

By the triangular inequality, ‖E[g(ϕ(Yt))|ϕ(Y1)] − E[g(ϕ(Yt))|ϕ(Y0)]‖2 is bounded

by

‖E[g(ϕ(Yt))|ϕ(Y1)]‖2 + ‖E[g(ϕ(Yt))|ϕ(Y0)]‖2 . (36)

Both right hand terms in inequality (36) decrease exponentially fast to zero as t

tends to infinity, which concludes the proof of Corollary 2. !
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1985).

17



[27] W. M. Schmidt, Diophantine approximation (Lectures Notes in Mathematics
785, 1980).

[28] Y. Takahashi. β-transformations and symbolic dynamics in Proceedings of the Sec-
ond Japan-USSR Symposium on Probability Theory (Kyoto, 1972) (Lecture
Notes in Math. 330 Springer Berlin, 1973) 455-464.

[29] M. Viana, Stochastic dynamics of deterministic systems, Instituto de Matematica
Pura e Aplicada. IMPA, 21 (1997).

[30] W. B. Wu, Fourier transforms of stationary processes, Proc. Amer. Math. Soc. 133
no. 1 (2005) 285-293.

18


