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Abstract

We use a new weak dependence condition from Doukhan and Louhichi (Stoch. Process. Appl. 1999, 84, 313-342) to
provide a central limit theorem for triangular arrays; this result applies for linear arrays (as in Peligrad and Utev, Ann.
Probab. 1997, 25(1), 443-456) and standard kernel density estimates under weak dependence. This extends on strong
mixing and includes non-mixing Markov processes and associated or Gaussian sequences. We use Lindeberg method
in Rio (Probab. Theory Related Fields 1996, 104, 255-282). (© 2000 Published by Elsevier Science B.V. All rights
reserved
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1. Introduction

We use here a new weak dependence condition from Doukhan and Louhichi (1997,1999) in order to provide
a central limit theorem (CLT in short) for triangular arrays; this result is used both for standard kernel density
estimates and for general linear combinations of weakly dependent sequences, analogously to Peligrad and
Utev (1997).

We work here under a fundamental causality assumption in order to be in position to use the Lindeberg
method for dependent sequences developed by Rio (1995,1996).

Contrarily to previous authors, Rio does not use Bernstein blocks to prove a central limit theorem. The
standard ways of proving such limit theorems for dependent random sequences are, after a decomposition into
Bernstein blocks, to make use of the standard techniques for i.i.d. sequences; Lindeberg and Stein are the two
techniques usually used (see references e.g. in Rio, 1996).
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For example, Bernstein blocks are used with Lindeberg method in Doukhan and Louhichi (1999): the results
presented in this note clearly improve on CLTs stated in this basic paper under a more general non-causal
frame.

A CLT is obtained for the kernel density estimates. The result is analogue to the one obtained for i.i.d.
or mixing samples (see Rosenblatt, 1991; Robinson, 1983). Under our frame, it has to be noticed that we
require the same assumptions here for such a CLT than to obtain minimax second order properties of the
kernel estimates (see Doukhan and Louhichi, 1997).

Finally, the linear triangular CLT requires the same assumption as to prove the standard /n-CLT.

We now introduce our dependence frame; it is a variation on the definition in Doukhan and Louhichi
(1999). Assume that, for convenient functions # and £,

Cov(h(‘past’), k(‘future’)),

converge to 0 as the distance between the ‘past’ and the ‘future’ converges to infinity. Here ‘past’ and ‘future’
refer to the values of some time series of interest. Asymptotically, this means that independence holds if we
use a determining function class.

More precisely, E being some Euclidean space R? endowed with its Euclidean norm || .||, we shall consider
a sequence of E-valued random variables (&,),cn. We define 1°° as the set of measurable and bounded
numerical functions on some space R* and its norm is classically written || @ ||o.. Moreover, let u € N* be

a positive integer we endow the set F = E* with the norm ||(xy,...,x,)||r = ||x1|| + -+ + ||x.]|. Let now
h:F =E" — R be a numerical function on F, we set
h(x)—h

Ay = ylF
the Lipschitz modulus of /4. Define

2 = J{he l*(R", R); ||h]lo <1, Lip(h) < oco}. (1)

u=1

Definition 1. The sequence (&,), c n is s-weakly (resp. a-weakly) dependent, if for some sequence 0=(0,), ¢ n
decreasing to zero at infinity and any (u + 2)-tuple (iy,...,i,/j1,/2) with ij < --- <i, <i, +r<j;<j,, and
he L™ satisfies ||h||oo <1 and k€ 2,

|Cov(h(&yys. -5 &, ), k(&) Ejy))| <Lip(k)O, (2)
and, respectively, for h k€ &
|Cov(h(Sis- -5 i, ), k(&) €jy))| < Lip(h)Lip(k)0,. (3)

Weak dependence conditions are shown to hold in, either causal or noncausal frames in Doukhan and
Louhichi (1997a). For this, consider also v-tuples (ji,...,/,) with i1 < -+ <@, <i, + r<j; < -+ <, then
such weak dependence conditions are defined for functions 4 and k& defined on E* and EY, respectively, through
inequalities

|Cov(h(&iys- -, Ci, ) k(S5 &) < uLip(k)O, 4)
if k€ ? and ||h]|oo <1 or
|Cov(h(&,,..., &), k(& ..., &, ))| <min(u, v)Lip(h)Lip(k )0, (%5)

if bk € &. Strong mixing defined by Rosenblatt (see e.g., Doukhan, 1994) is a variation of such definitions
(see Doukhan and Louhichi, 1999); however mixing refers to o-algebras rather than to random variables. For
completeness, we now recall some examples adapted from Doukhan and Louhichi (1999), where noncausal
cases are also considered:
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Definition 2. Let (17,), ¢ z be a stationary sequence of real valued r.v’s and F' be a measurable function defined
on RN. The stationary sequence (&,),cz defined by &, = F(#, u—1,n—2,...) is called a causal Bernoulli
shift. We denote (J;)x ¢ v any nonnegative sequence such that

[E‘F(?IO» n—1, 17*2:"') - F(’?Ow . '9177}”05 0,.. )| <(Sr

Causal shifts with i.i.d. innovations (1) ¢z satisfy (4) with 0, =26, (see Rio, 1996). Examples of such
situations follow:

e The example of the nonmixing stationary Markov chain with i.i.d. Binomial innovations (1;);cz, &, =
(&u—1 + nn)/2 satisfies 0, = O(27"); its marginal distribution is uniform on [0, 1].

e The real-valued functional autoregressive model & =r(&_1)+n, r:R — R. If |r(u) — r(u')| <clu—o'| for
some 0<c < 1 and for all u,u’ €R, and if the i.i.d. innovation process (1;); ¢ 7 satisfies E||&y|| < oo, then
s-dependence holds with 6, =6, = Cc” for some constant C > 0.

e Chaotic expansions associated with the discrete chaos generated by the sequence (#;);cz. In a condensed
formulation we write, F(x) =2, Fx(x), x€ RN for

o0 o0 o0
_ (k)
Fir(x)= Z Z .. Z A G Xj Xy X k=1,

N1=0/2=0  ji=0
where Fi(x) denotes the kth-order chaos contribution and Fy(x) :ag)o)
we write in the vectorial notation, Fi(x)=>_, . aﬁk)xj. Processes associated with a finite number of chaos
(i.e. Fr =0 if k > ko for some ky € N) are also called Volterra processes. A simple and general condition for
L'-convergence of this expansion, still written in a condensed notation, is Y2 {>"; < |a§k)\[E|§0|k} < oo0.

This condition allows to define the distribution of such shift processes. A suitable bound for ¢, is then

oo
=31 > |dP|Eal ;<.

k=0 L j €N  [ljlloo>r

is only a centering constant. In short

e For example, linear processes &, = Z,fio aiNy—r which include ARMA models are those with Fy(x) =0
for all £ > 1. A first choice is 0, = E|no|Y ;. , |ax| for the linear process with i.i.d. innovations such that
Elno| < 0.

For centered and L? innovations, another choice is &, = \/E[no|> >, -, |ax|*.

e The simple bilinear process with the recurrence equation &, = a&;_ + b&,_11,—1 + ;. Such processes are

associated with the chaotic representation in

o0

Jj—1
F)y=> x;[[(a+bx), xeR”

Jj=1 s=0

If c=Ela+ b&| <1 then 6, =0, =c"(r+1)/(c — 1) has a geometric decay rate.

Definition 3 (Esary et al., 1967). The sequence (&,),cz is associated if for all coordinatewise increasing
real-valued functions /4 and k on R4 (4 C Z), Cov(h(&4),k(E4)) =0, if E[R*(E4) + k*(E4)] < oo.

Associated sequences satisfy (5) with 0,=sup, c 7 > ;- [Cov(&;, &44)|. Absolute values are useless here, but
Gaussian sequences also satisfy this condition with them. Hence combinations of such independent processes
yield examples of weak dependent sequences which are neither Gaussian nor associated.

The paper is organized as follows. Our main results are stated with their applications in Section 2, and
Section 3 is devoted to prove the main results.
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2. Main results

This paper is concerned with triangular arrays (X, x)k=1,., for n=1,2,... defined through an E-valued
weakly dependent sequence (&,),en by numerical Lipschitz functions g, , defined on E for k=1,...,k, and
n=1,2,..., we assume that the sequence of integers k, increases to infinity with n. We set

Xn,k = gn,k(ék) and Sn :Xn,l + - +Xn,k,,-
We assume in the following that EX, » = 0. Now let S;, =X, 1 + -+ + X, for 1<k <k,, we also suppose

that the exist constants ¢,o > 0 such that

lim VarS,=¢> >0 and vg,=VarSi, — VarSy_,> . (6)
n

n—oo

for each k€ {l,...,k,} and for any integer n.
We shall also set

j~n: sup Lip(gk,n): M, = sup ||gk,nHooy

1<k<h, 1<k <k, o
O0p= sup E|Xp, and 4,= sup E[Xp.Xial
1<k<k, 1 <kAl<k,

We are now in a position to state the two main results of this paper.

Theorem 1. Assume that the E-valued sequence satisfies the s-weak dependence condition and the triangular
array (X r)1<k<k, defined as before satisfies assumption (6), then if

Ky k
(kayy + KM, 8, — 0, kM, Y min(2,0,, 4,) = 0, ky Y min(M,2,6,, 4,) — 0,
p=1 p=1
as n — 0o, we obtain
Sy —n—oo (0, 62) in distribution.

Theorem 2. Assume that the E-valued sequence satisfies the a-weak dependence condition and the triangular
array (Xux)i<k<k, defined as before satisfies assumption (6), then if

ki kn
(kayy + K7W, 0, — 0, kM, Y min(220,, 4,) — 0, ky »_ min(726,, 4,) — 0,
p=1 p=1
as n — 0o, we obtain
Sy —nsoo A0, 02) in distribution.

Applications of those results given in Section 3 will prove that they lead to real improvement of previous
results. They also lead to completely new results extending e.g. in Peligrad and Utev (1997).

2.1. Linear triangular arrays
The random variables & are supposed to be uniformly bounded, real valued and centered at expectation
and here

Gn, k(X) = ap X,

hence setting b, = sup; ;< |a. x| we obtain, 4,<Cb,, M, <Cb,, 6,<Cbh,, A4,<Ch2, for some constant
C > 0. We deduce the following result:
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Corollary 1. Assume that the R-valued sequence satisfies either the s-weak dependence condition or the
a-weak dependence condition and assumptions (6). If moreover, k,b> — 0, as n — oo and Z;ozl 0, <
then

Sy, — A0, 02) in distribution, as n — oo.

Notice first that as in Peligrad and Utev (1997), we need b, — 0. Moreover, those authors also assume the
first condition in (6); the second one is however not always satisfied (as for the example of regression with
a fixed design described without proof in the latter paper).

The proof also yields the (standard) CLT n~"23 ] & — A47(0,0%) for a stationary and bounded weakly
dependent sequence with ¢ > 0 and Z;O:O 0, < oo.

2.2. Density estimation

Let u be some numerical function with integral 1, Lipschitzian and rapidly convergent to 0 at infinity, for
simplicity, we assume here that it is compactly supported; one classically (see e.g. Rosenblatt, 1991) defines
kernel density estimates for the marginal density of the process (&,) by setting for some fixed sequence (4,)
of positive real numbers such that 27 — 0 (for clarity we write % instead 4,) and nh — 0 as n — oo,

F) = fun(x) with  f,4(x)= % Z” (x —htfk) .
k=1

We assume from now on, that the marginal density of X, exists and we denote it f. The study of the bias of
this estimate is purely analytical and does not depend on the dependence properties of the sequence (&,) as
it is noticed in Rosenblatt (1991). We thus restrict our attention to the centered estimation process, written as

Zy(x) 1= Zy 1, (¥) = /o (f (x) — Ef (x)).

Let xi,...,x; € R, if one wants to know the asymptotic behaviour in distribution of the vector (Z,(x;),...,
Zy(x1)), it is sufficient to use the previous theorems with k, =n and, X, ; = (1/vnh) Zj’:l siu(&x — x;/h), for
arbitrary numbers sy,...,5; € R, to see that this example enters the frame of a general triangular array.

Corollary 2. Assume that the previous s-weak dependence (resp. a-) condition holds for the stationary

sequence (&), ecn with for some positive a < % (resp. a < %) Z;‘;l 0, < oo, then the finite-dimensional

marginals (Y,(x1),..., Y.(x1)), of the process Y,(x) = Z,,(x)/\/f(x) ffooo u?(t)dt converge in distribution to
an N(0,1;) random variable if we assume moreover that f(x1)#0,..., f(x;) # 0, that £y’s marginal admits
a continuous marginal density f and the marginal densities f1(x, y) of the bivariate random variables (&g, &)
exist for any k > 0 and satisfy supy. o Sup, )¢ geSk(x, y) < 00.

Remarks

e These conditions hold, respectively, if 0, = O(r~“) for some a > 3 (resp. a > 4).

e This result improves on a previous result in Doukhan and Louhichi (1997) (see also Isha and Prakasa,
1995 or Chanda and Ruymgart, 1990), e.g. under association we need Cov(&g, &, )=0(r—¢) for a > 5 while
the previous result was obtained assuming a > 12 and for causal shifts it was needed that 6, = O(»~%) for
some a > max{9, %(1 + 671} if h~n~°. In both cases, the result seems to be new.

e For strongly mixing sequences, the condition o, =0(n~%) for a > 1 ensures this CLT as proved by Robinson
(1983) (and also Ango Nze and Doukhan, 1996); this assumptions is of a different nature, e.g. linear
processes satisfy the mixing conditions (under additional regularity conditions; see Doukhan, 1994, Chapter
2.3) the decay rate of the coefficients are there more restrictive.
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Up to constants, we obtain /4, = 1/(h\/ﬂ), M, = J,h, A, = h/n, and 6, = h/\/nh. Conditions (6) follow
by standard arguments from assumptions on marginal densities and from Z;O:o 0, < oo for 3a <1 (resp. for
4a < 1) (see e.g. Doukhan and Louhichi, 1997 or Ango Nze and Doukhan, 1996). We now split the proof
in the cases considered.

2.2.1. s-dependence
Now nM?28, 4+ n**M,5, = 1/(v/nh) + (4h'3/(nh)'?), so that we just need nh —, o, oc0. Let a€10,1],

l—a
= : = 017 ‘ h 1 1-3a = a
nMn Zmln()ungp’ Ai’l)< Z <hz> <\/;> = W}l ZQP.
p=1 p=1

p=1

1 0 a
We need that for some a<3, >~ 0 <ooc.

anln(An,M} 0,)< me< ) Z@ah 2ap1-3a

If for some 0 <a < 3, S el 0, < oo, the previous expression tends to 0 when n — oo.

2.2.2. a-dependence
Now, nM?25, = 1/v/nh — 0 as n — oco. We also consider

e} . 0 1 i o)
nM,,me()Lﬁ , A )—me <\/7 n1/227/2> S\/—n_hhl 4 Z@Z for a €]0,1].
p=1 p=1

So we need that there exists a <y with > o1 Oy <00

”Zmi“(iiop’Aﬂ):MmeQ/» n1/2h7/2> <h 4"20"
p=1 p=1

oo 0“

p=1 05 < 00, we conclude the proof. [

If there is some positive a < 1 with )

3. Proofs
3.1. Proof of Theorem 1

The proof is a variation of Lindeberg method after Rio (1995). Consider a bounded thrice differentiable
function /#: R — R with continuous and bounded derivatives. Set C; = 19| oo, for j=0,1,2,3. Also consider
o2 =VarS§,. Set, for some standard Gaussian r.v. 1, 4,(h)=E(h(S,)— h(a,n)). The theorem will follow from
assumptions (6), if we prove that

lim 4,(h)=0.
Recall that vy, > 0 for each k and set Y, s ~ A47(0,v, ). The sequence (Y, i)i<k<k, n>1 1S assumed to be
independent and independent of the sequence (& )r e v, and set, if 1<k <k,, T, = Zf;k 41 Ynj, empty sums
are, as usual, set equal to 0. We are in position to use Rio’s decomposition

kn
Ay(h) =" Agu(h) (8)

=
with A, (h) = E(h(Sk—1,n + Xk + Tin) — B(Sk—1,0 + Yok + Tin))-
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The function x — Ay ,(x) = Eh(x + Ti,) has the same derivability properties as %, e.g. for 0<;/ <3, ||h§{/,2|\
< Cj; now, from independence of the Gaussian r.v. Ty, and the process (£,), e n, We write Ak,,,(h):A;CB(h)—
AP)(h), with

SN

Vk,n
2 [Eh]/{l,n(Sk—l,Vl)a

AR = Ehyu(Se—1.0 + Xng) — Ebin(Si—1.0) —

Vk,n
Ao () = E (St Yor) = Ehin(Simrn) = = EHL(Simr).

Bound of A}fz(h). Using Taylor expansion yields for some random variable valued p, ,€(0,1):
A}f)(h): Eh;ﬁn(Sk_l,n)Yn,k + %[E h]lén(Sk—l,n)(Ynz’k —Un )+ é[Ehﬁz(Sk_Ln +on i Yok )Y,ik. From the independence

N

of the Gaussian sequence, |A{)(7)| <(C3/6)E|Y,,*, hence |4)(h)| <(2C3v,7/3v/2m). Now vy, = Var X,, i +

N

2 Z;:ll Cov (X, j, X, 1), hence vy, <M,6, + 2 Zlf”_l min(4,M,0;, 4,). We thus need

j=1
k—1
K23 | M8, + 2 Zmin(inM,Hj,A,,) oo O. 9)
j=1

Bound of Agi(h). Set Agn)(h) = [Eéglz(h) we write, again with some random 14, €(0,1), 522(h) =
Ry o (Sk—1.0)%n k + 31 (Se—1.)XZ | — i) + %(hsz(Sk_l,n + Tu i Xn )X ). We analyze separately the term
in the previous expression

1 C
6|u§h§j,)l(Sk—l,n +Tn,an,k)Xyik‘<Z3M125n- (10)

To estimate the median term, we write Cov(h;én(Sk_l,,,),Xn%k) = ZI;:_II Cov ((hy, ,(Sjn) — h;én(S,_l,,,),Xf’k),
hence ‘

|C0V(h,'én(Sk,1,,,),Xn2’k)| <max(2C,, C3)M, E min(4,0;, 4,). (11)
j=1
|CoV(Ay(Sicn) = h n(Si—1,0)s X )| < € min(My, 4y O i, A ) (12)
and
\ERY (Skc—1.0)EX, i X | < C min(My 2y Op i, A,). (13)
Adding (12) and (13) and summing up the expression for all i we get
k—1 k—1
E (St 10Xk — Y, (Sem1.) Y EX iXo | SC Y min(M, 2,0, 4y). (14)
i=1 p=1

We add Egs. (10), (11) and (14) to obtain

k—1

|4)(h)| <max(2Cs, C3) {M,fan + M, Y min(2,0, 4,) + Zmin(Mnxl,,Hp,An)} (15)
p=1
Now we sum for all £ to conclude
kn oo oo
> alm| <c {an,fan + kM, > min(,0p, 4,) + Ky Zmin(annep,An} (16)
k=2 p=1 p=1
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3.2. Proof of Theorem 2

Only replace, respectively, Eqgs. (11)—(14) by

k—1
|CoV(hY ,(Sk—1.). X, | CM, Y~ min(20;, 4,),
Jj=1

|Cov(hy,(Sin) = M (Si—1,): X k)| < Cmin(Ay, 220k ),

|E R W (Sk—1,0)EX;, X, k| < Cmin(4,, 430—;)

and
k—1 k—1
E (St 100Xk — B (Sem1.) Y EXiXo | SC Y min(220;—1, 4,).
i=1 p=1

Then we replace (15) by

k—1 k—1
A <C [anén + M, > min(i20,,4,) + Y min(20,, A,,)} .

p=1 p=1
Finally we replace (16) by
kn [e'e) [e%s}
> A < ChaM2S, + kuM, Y min(i20,, 4,) + > min(720,, 4,).
k=2 p=1 p=1
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C. Coulon-Prieur & P. Doukhan

Erratum de “A triangular central limit theorem under a new weak
dependence condition”, 17 septembre 2001

1 Résultats principaux

Theorem 1 Assume that the F-valued sequence satisfies the ’s’-weak dependence condition and the
triangular array (X, k)i<k<k, defined as before satisfies assumption (6), then if

2
(kp M, + k3 )M,5, =0, k,M, me Anbp, Ay +62) =0, Ky, me (Mo A8y, Ay) =0

p=1

as n — oo we obtain
Sn —tnseo N(0,0%), in distribution.

Theorem 2 Assume that the E-valued sequence satisfies the “a’-weak dependence condition and the
triangular array (X, k)i<k<k, defined as before satisfies assumption (6), then if

(kn M, —|—k3)M5 -0, k,M, me (A20,,A, +62) = me (A\26,,A,) =0,

p=1

as n — oo we obtain
Sy —noseo N(0,0%), in distribution.

D’autre part dans I'hypothese (6), on peut remplacer vy, = VarS, — VarSiy_;, > a > 0 par
dng € N*/vg,, > 0Vn > np, VI < k <n.

Il faut aussi remplacer la remarque “This result also yields the (standard) CLT n~1/2 Yorék —
N(0,0%) for a stationary and bounded weakly dependent sequence with % > 0 and Z;OZO 0, < oo”
de la page 65 par “A variation on the proof of the main result yields the standard CLT”.

On remplace aussi 2.2.1. et 2.2.2. par

s-dependence:

Now nM?26, + ngMn(Sn = ﬁ + -1, so that we just need nh —,_., co. Let a €]0,1],
n /ng

1-a
h 1
nM, Y min(A8,, A, +62) < ( ) — = —
Z ’ pz:; h? " (nh) "2

p=1

P15 iog.
p=1

1
We need that for some a < 3, E;o 1 05 < oo

n Y min(A,, MpA0,) <3707, min ( nep) < Yol OghTent e

If for some 0 < a < %, Z;O 1 05 < 00, the previous expression tends to 0 when n — oco.

a-dependence: Now, nM?2§, = ﬁ — 0 as n — co. We also consider
ardependence. n

> > no8 1 » 00 )
nM, Zmln(Aiepv Ap+ 5721) = Zmln (\/;7 Lp z) < mhl 4 Z 0p for a €]0, 1].
p=1

p=1 nzh p=1

'Université de Cergy-Pontoise, Laboratoire de mathématiques, Batiment A4, Site Saint Martin, 95011 Cergy-
Pontoise Cedex, France. email: prieur@math.u-cergy.fr, phone: 33-1-34-25-66-24.




So we need that exists a g < with E;o 105 <

. 2 o . 1—4a a
n Elmln()\nOP,An) =Vnh Elmln (\/;, ) <h E 0.
p= p=

n2h2

o0 0(1

p=1 0p < 00, we conclude the proof.

If there is some positive a < § with Y

2 Preuves des résultats principaux

On remplace, dans la preuve du Théoreme 1, (11) page 67 par:

k—1
|Cov(hy , (Sk—1,n), X2 4)| < max(2Cy , Ca)My, Y min(Anf;, Ay + 57). (1)
7=1
On remplace (15) et (16) page 67 par:
k—1
AN ()] < max(2Cy , C3) | M26, + My Y min(Mafy, Ay +82) + > min(MaAaby, Ag) | (2)
p=1
et
kn 00 00
STAN ()] < C [k M28, + koM, > min(Aafy, A+ 02) + ko Y min (M Ay, Ay) (3)
k=2 p=1 p=1

Dans la preuve du Théoreme 2, on remplace

k—1
|Cov(hY . (Sk—1,), X2 )| < CM, > min(A26;, A,),
7=1
par
k—1
|Cov(hf,,.(Sk-1,n), X )| < CM,, > min(A26;, A, + 57).
7=1
On remplace
k—1
AN Y < CM26, + M, S min(A26,, A,) mln)\ 0,,A,)
k,n n n’p
p=1
par
k-1 k-1
AV (B)] < CIM26, + My " min(A20,, Ay +32) + Y min(A260,, A,)].
p=1 p=1

Enfin on remplace

kn 00
IS TAD ()] < ChaM26, + koM, Y min(A26,, A,) + Z min(A26,, A,,)
k=2

p=1
par
|ZA h)| < Ck,MZ25, + kM, me (A20,, A, + 62) +me (A20,,A,).
p=1 p=1
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