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Abstract 
 
The global sensitivity analysis (SA) of a dynamic soil water balance model embedded in 
a Decision Support System for vineyard water management is achieved via Sobol 
variance-based method. The sensitivity analysis is applied sequentially at each 
simulation step, which enables to follow the variation of parameters influence over 
time. Results allow to identify four soil-related parameters having the highest influence 
at the vine plot scale, and for various climate scenarios. This provides fundamental 
information for the operational use of the model, i.e. when few input data are available 
to the end-user.  
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Introduction 
 
Increases in drought and heat waves occurrences in Mediterranean vineyards have been 
recorded in the last twenty years (Ojeda 2007) and are expected to increase in the future. 
In this context, implementing efficient irrigation management strategies, including 
decision support systems (DSS), to monitor vine water deficit may become increasingly 
important for ongoing wine production and profitability (Battaglini et al, 2009).  
One of the reference indicators of vine water status is the predawn leaf water potential 
(PLWP) (Pellegrino et al, 2004). However its direct measurement on the field remains 
occasional since it is both costly and tedious. An appealing alternative consists in 
simulating the PLWP by using a simple soil-vegetation-atmosphere-transfer (SVAT) 
(Lebon et al, 2003; Pellegrino et al, 2006). But the major issue when using models is 
that the accuracy of the results strongly depends on the accuracy of its input parameters. 
Besides, even simple SVAT models require many parameters whose values are 
potentially difficult and costly to measure in the field. This is even truer for parameters 
specific to each configuration studied, like soil properties. It is thus essential to identify 
the parameters having a large influence on the model output variability, in order either 
to concentrate experimental efforts on their measure when possible, or to calibrate them 
otherwise.  
Sensitivity analysis (SA) techniques are used to this end, since they enable to assess the 
most relevant parameters of agro-meteorological models. Celette et al. (2010) for 
instance have realized a ‘one-at-a-time’ SA of a model simulating water partitioning in 
an intercropped vineyard, which consists in varying one model input at a time while 
keeping all other fixed and thus does not detect the presence of parameters interactions. 
Recently, more advanced global SA methods have been increasingly applied to evaluate 
the output variability when all inputs vary simultaneously in their whole uncertainty 



range (Saltelli et al, 2000). The specificity of SVAT models is that they provide a time-
dependent output that varies with weather data, so that parameters influence may also 
depend on climate variability. SA methods have already been applied in such a context. 
For instance, for a discrete-time model at a daily time step, Lamboni et al. (2009) 
computed sequentially the SA at each simulation date. This enabled to follow the 
variations of parameters influence over time.  
The goal of this study was to evaluate a simple soil water balance model parameterized 
for vine for the prediction of PLWP dynamics, in the objective of its practical use in a 
DSS for vineyard water management by winegrowers and vineyard advisors of the 
Mediterranean Languedoc-Roussillon region, Southern France. This objective was 
achieved by identifying via a SA the parameters whose uncertainty at the vine plot scale 
significantly influence the PLWP uncertainty for various climates scenarios. 
 
Materials and methods  
 
SVAT model description 
A model describing soil water balance dynamics parameterized for vine (Lebon et al, 
2003) was amended to account for runoff (USDA, 2004, Celette et al, 2010). This 
model computes the fraction of transpirable soil water (FTSW) at a daily time step 
taking into account: radiation absorption (Riou et al, 1989), vine canopy growth and 
transpiration (Lebon et al, 2003), bare soil evaporation (Brisson & Perrier, 1991)  runoff 
and drainage. FTSW ranges from 0 to 1 and is defined as the ratio between the daily and 
the total amount of transpirable soil water (TTSW), where TTSW is the amount of 
water between field capacity and wilting point for a given rooting depth. The weather 
variables necessary for driving the model are daily precipitations, solar radiation, mean 
air temperature and potential evapotranspiration (ETP). The model runs starting January 
1st, and the PLWP is estimated from bud-break to senescence from an exponential 
relation with FTSW (Pellegrino et al, 2006). 
 
SA method 
We used the global sensitivity analysis method by Sobol (1990), based on a 
decomposition of the variance V of the model output, similar to that used in the 
classical analysis of variance of factorial experimental designs. The decomposition aims 
at quantifying the variance contribution of input parameters to the total model variance. 
For a model with p independent parameters, it reads: 
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where Vi=1…p are the individual contributions of the p parameters and the other terms 
are the contribution of the combination of two or more parameters. The Sobol 
sensitivity indices are defined as the ratio between the terms on the right-hand side of 
equation (1) and V, mainly 
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which are called the first-order and total sensitivity indices respectively. They allow to 
distinguish between the average contribution of individual parameter and the total 
contribution including interactions with other parameters. The sensitivity indices are 
estimated via a Monte Carlo sampling of the parameters probability distributions at a 
cost of N(2p+2) model evaluations (Saltelli, 2002). N must be chosen large enough to 
provide stable results, which is the main drawback of the method if the model 
computational time is high.  
 
SA description 
The SVAT model requires the definition of 21 input parameters. Among them, some 
have fixed nominal values like vine-dependent parameters, while others are plot-
dependent like soil characteristics and thus have different nominal values depending on 
vine plot. In order to scan the range of vine plots and climate variability of the 
Languedoc-Roussillon region, several independent SA were performed by crossing 24 
sets of vine plot parameters with three years of weather data, representative of dry, 
medium-dry and humid years. The weather data were classified on the basis of a 
climatic index defined as the total rainfall minus ETP during the vegetative cycle. The 
uncertainty ranges and probability distributions of all parameters were set according to 
literature or field expertise.  An exhaustive preliminary screening SA (not presented) via 
the Morris method (Campolongo et al, 2007) has allowed to identify 6 parameters as 
having a negligible influence on the model output. These parameters have been fixed to 
nominal values in the SA presented here. They include the soil albedo and the 
cumulative thermal time defining the transition between phenological stages. Out of the 
15 remaining parameters, 7 are plot-dependent and it would have been ideal to perform 
the SA on all possible combinations. However, excessive computational time led to 
restrict the number of SA. Preliminary Morris tests and field expertise allowed to 
identify 4 of the plot parameters as having the highest impact on the output. SA analysis 
were thus performed for 2 or 3 representative values of those 4 parameters, as defined in 
Table 1. The other parameters have a single representative value in all SA, or follow a 
uniform distribution (see Table 1).  All SA were achieved with N=5000. 
 
Table 1. Parameters of the SVAT model, with the probability distribution chosen for the SA, i.e. either a uniform 
distribution in the range (binf, bsup) or a normal distribution of mean µ and standard deviation � truncated in the range 
(binf, bsup).  

 
Parameters Description Probability 

distribution 
Range  

(binf, bsup)   µ1 µ2 µ3 σ 

TTSW [mm] total amount of transpirable 
soil water normal 25-350 100 175 250 50 

Hmax [m] foliage maximum height normal 0.25-1.5 0.8 1.1 - 0.2 
Lmax [m] foliage maximum width normal 0.2-51 0.35 0.55 - 0.5 
FTSWinitial [-] FTSW value at January 1st normal 0-1 0.5 1 - 0.3 

FTSWthreshold [-] 

threshold under which vine 
transpiration declines 
linearly with FTSW from 
its maximum value to zero 

normal 0.3-0.9 0.4 - - 0.2 

CN [-] runoff parameter uniform 60-99 - - - - 

Pomin [-] 
minimum proportion of 
foliage gap normal 0.1-0.5 0.2 - - 0.2 

D [m] inter-row distance normal 1.5-3.5 2.5 - - 0.1 
orientation [rad] row orientation normal - π/2 - - π/4 



b1 [mm] 
parameter of the bare soil 
evaporation model (Brisson 
& Perrier, 1991) 

normal 5-21 14 - - 5 

b2 [-] 
parameter of the bare soil 
evaporation model (Brisson 
& Perrier, 1991) 

normal 0.05-0.18 0.12 - - 0.03 

U [m]  
parameter of the bare soil 
evaporation model (Brisson 
& Perrier, 1991) 

uniform 2-6 - - - - 

THTHmax [°C.d] 
parameter of the vegetation 
growth model (Lebon et al, 
2003) 

uniform 350-750 - - - - 

THTLmax [°C.d] 
parameter of the vegetation 
growth model (Lebon et al, 
2003) 

uniform 350-750 - - - - 

THTPomin [°C.d] 
parameter of the vegetation 
growth model (Lebon et al, 
2003) 

uniform 350-750 - - - - 

 
 
Results 
 
For all tested combinations of climate scenarios and plot parameters, the results were 
qualitatively identical. In every case, marked variability was associated to variations of 
TTSW. This is the reason why the following results are presented for a single year and 
for fixed mean values of Hmax, Lmax, and FTSWinitial. 
Figure 1 compares the results obtained for mean values of TTSW equal to 250 (a-b), 
175 (c-d) and 100 mm (e-f). All simulations were realized with the medium-dry weather 
data scenario, and for mean values of Hmax, Lmax and FTSWinitial set to 0.8m, 0.35m and 
0.5 respectively. Figures 1.(a,c,e) present the daily evolution of the sensitivity indices. 
Figures 1.(b,d,f) show the related uncertainty range of PLWP represented by its median, 
interquartile range (range between the 1st and 3rd quartiles) and interdecile range (range 
between the 1st and 9th deciles). Figure 1.g shows the corresponding precipitations 
histogram. The growing season was divided into three phases: a phase of constant plant 
water constraint, a soil-drying phase and a soil-wetting phase.   
In every case, the PLWP variance changes over time as shown in figures 1.(b,d,f).  It is 
strongly related to precipitations as highlighted by the comparison with the 
precipitations histogram, since the uncertainty range diminishes after a rain event. For 
low TTSW, the PLWP variations are the widest. This is due to the exponential relation 
between PLWP and FTSW; the smaller the TTSW, the more sensitive the PLWP to 
soil-water content variations.  
Figures 1.(a,c,e) show that when the PLWP variations are high, i.e. during the drying 
and wetting phases, they are mainly explained by the individual contributions of 4 soil-
related parameters: TTSW, FTSWthreshold, CN and FTSWinitial. The individual influence 
of other parameters and of parameters interaction remains limited in the drying phase 
and tends toward zero in the wetting one.  
For days of the drying phase when PLWP variations are high, the predominant 
parameter is TTSW, especially when its value decreases, i.e. when the rooting depth 
decreases for a fixed texture. This is partly due to the fact that the standard deviation of 
the TTSW distribution, chosen from field expertise, has an absolute value of 50 mm in 
all case (and so a relatively higher deviation for low TTSW).  



 

 

 
Figure 1. Daily SA results for a mean value of TTSW equal to 250 (a-b), 175 (c-d) and 100 mm (e-f). 
Figures (a, c, e) show the daily pie chart of sensitivity indices (first order and interactions). Figures 
(b, d, f) show the related uncertainty range of PLWP represented by its median, interquartile range 
(range between the 1st and 3rd quartiles) and interdecile range (range between the 1st and 9th 
deciles). Figure (g) shows the corresponding rain histogram. Vertical dotted lines mark the 
beginning of the soil-drying and soil-wetting phases. 
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The relative contribution of FTSWthreshold is limited to the drying season and seems to be 
independent of TTSW.  
The influence of runoff parameter CN in the drying phase is not negligible, even though 
rain events are scarce. Since the runoff model, and thus CN, comes into play only when 
daily precipitations are non-zero, the parameter influence in non-rainy days is the 
consequence of previous precipitations. In the soil-wetting phase, almost all the PLWP 
variations are explained by CN. This phase corresponds to leaf senescence, where soil 
water extraction decreases, which means that the soil-water variations are mainly due to 
precipitations and bare soil evaporation. Besides, the rain events are important at this 
time of the year in the Languedoc-Roussillon region, and the influence of CN in the 
runoff model increases with the amount of precipitations. 
The value of FTSWinitial at January 1st is influent essentially in the first phase of the 
season, which is of reduced interest since the PLWP variations are small at that time. 
Still, it has a non-negligible influence in the drying phase when the rooting depth 
increases (Figure 1.a). It still explains around 20% of the output variability in August, 
whereas for shallower rooting depths, the initial influence is damped at some point by 
rain events. 
 
Discussion 
 
The issue here is to make best use of these results for a practical use of the SVAT model 
in a DSS. Results show that of the 21 parameters present at the beginning, only 4 soil-
related ones condition at least 60% of the total PLWP variability. In practice, this means 
that the user is allowed some error in defining the other parameters. However a 
particular effort has to be done for the definition of these 4 parameters, either by 
looking for relations between these parameters and parameters more easily accessible to 
the end-user, or by calibrating them if necessary.   
The most influent parameter is by far the TTSW, which confirms previous studies 
(Gaudin & Gary, 2012, for instance). Besides, this parameter is subject to a large 
uncertainty when evaluated in the field, which is critical for low TTSW values as seen 
above. When the model is used in the DSS, the TTSW is estimated from the average 
soil texture and average rooting depth given by the end-user. The difficulty in 
estimating it lies in the fact that, more than the actual average rooting depth, it is based 
on an effective depth that supposes the presence of water-absorbent roots only, and 
homogeneously distributed in the soil, which is clearly untrue for vine roots. Hence, the 
best option seems to calibrate the TTSW against field data for each vine plot. 
Concerning FTSWthreshold, the choice was made to keep it fixed to its nominal value of 
0.4. It would be interesting in the future to look for a physical relation between this 
parameter and other measurable parameters. 
The parameter CN is very difficult to measure and, in the practical use of the model, is 
estimated roughly from soil texture classes and previous rain events (USDA, 2004). 
However, its estimation is less critical than that of TTSW since its effect concentrates 
essentially in the soil-refilling phase. This phase is less critical than the previous drying 
phase, since it influences mainly the soil-water refilling of the year to come, more than 
the grape quality and yield of the current year. It is to be noted that for a humid year, the 
influence of CN is more consequent in the first phase of the vegetative cycle (results not 
shown). 



FTSWinitial is the value at January 1st, while the PLWP is computed from bud-break at 
the beginning of April. Under these circumstances, one would have hoped to see its 
influence damped by rain events before the vegetative cycle. As seen in the results 
above, this is the case most of the time in the regional climatic context, except for large 
TTSW values. FTSWinitial, as an estimate of soil-water filling, is more easily evaluated 
on the field than the TTSW. However, when field data are not available, an option 
would be to calibrate it along with the TTSW.  
 
Conclusions and perspectives 
 
The SA presented above has enabled to identify the most influent parameters of the 
SVAT model used to simulate PLWP in a DSS for vine water management. Based on 
these results, the choice was made to calibrate the most influent parameter only. This 
calibration is currently done by hand and the following step is now to automate it in the 
DSS. An option would be to include some other hard-to-measure influent parameters in 
the calibration process, especially the runoff parameter CN. Besides, another important 
step is now to evaluate the sensitivity to parameters uncertainty of the DSS 
recommendations, like irrigation schedule and quantity. 
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