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1 Introduction

In many random combinatorial problems see Janson [16], the distribution of the interesting statis-
tic is the law of an empirical mean built on an independent and identically distributed (i.i.d.)
sample conditioned by some exogenous integer random variable (r.v.). In general, this exogenous
r.v. is also itself a sample mean built on integer r.vs. In the whole paper N∗ will denote the
set {1, 2, . . .} of positive integers, N = N∗ ∪ 0, and Z will be the set of all integers. Hence, a
general frame for this kind of problem may be formalized as follows. Let (pn) be a sequence of

integers and (qn) be a sequence of positive integers. Further, let X = (X
(n)
j )n∈N∗,j=1,...,qn and

Y = (Y
(n)
j )n∈N∗,j=1,...,qn be two triangular arrays of random variables. Both arrays are such that

on their lines the r.vs are i.i.d.. Moreover, it is assumed that the elements of the array X are

integers. The interesting distribution is then the law of (qn)−1Tn := (qn)−1
∑qn

j=1 Y
(n)
j conditioned

on a specific value of Sn :=
∑qn

j=1X
(n)
j . That is the conditional distribution

Ln := L((qn)−1Tn|Sn = pn),

where (pn) is some given positive integer sequence. When the distribution of (X
(n)
j , Y

(n)
j ) does

not depend on n, the Gibbs conditioning principle ([26, 6, 7]) states that Ln converges weakly
to the degenerated distribution concentrated on a point χ depending on the conditioning value
(see Corollary 2.6). Around the Gibbs conditioning principle, general limit theorems yielding the
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asymptotic behavior of the conditioned sum are given in [25, 14, 19]. Asymptotic expansions for
the distribution of the conditioned sum are proved in [12, 22]. In this paper our aim is to prove
a large deviation principle for Ln. Roughly speaking, this means that we will give an exponential
equivalent for this conditional distribution. On a finer scale, we prove a large deviation principle for

L̃n := L(
√

an
qn

(Tn−bn)|Sn = pn), where bn is a centering factor specified in Theorem 2.4 of Section

2.2.3 and an is a decreasing positive sequence of real numbers with an → 0, anqn → +∞. We then
say that L̃n satisfies a moderate deviation principle [7, Section 3.7]. Our work follows the nice ones
of Janson [16, 15]. In these last papers, a central limit theorem with moment convergence is proved.
The starting point in the proof is a simple representation of the conditional characteristic function
as an inverse Fourier transform. This representation was first given by Bartlett [4, Equation (16)].
To establish large and moderate deviation principles we will make use of Gärtner-Ellis Theorem
in which an asymptotic evaluation of the Laplace transform is needed. For this purpose, we first
transcribe the Bartlett formula to get a simple integral representation for the conditional Laplace
transform (see Lemma 3.1). The main result of [16] is quite general as it only requires assumptions
on the three first moments of (X,Y). Here we need further assumptions. However, contrarily to
[16, Section 2], we do not restrict to the central case (conditioning on Sn = E(Sn)) nor on the

“pseudo” central case (conditioning on Sn = E(Sn) +O
(√

qnσX(n)
i

)
, with σ2

X = Var(X)). In [22],

the authors study general saddle point approximations for multidimensional discrete empirical
means and obtain an approximation formula for conditional probabilities. We focus here on the
exponential part of this formula, stating a full large deviation principle (see Theorem 2.3). Using
some classical tools of convex analysis we give an explicit natural and elegant form for the rate
function. Furthermore, we complement our study by stating a moderate deviation principle for the
conditional law (see Theorem 2.4). As usual, the rate function is quadratic and the scaling factor
is the asymptotic variance, which can be interpreted here as a residual variance in some linear
regression model, generalizing the factor found in [16] for the central case. The paper is organized
as follows. In the next section, to be self contained, we first recall some classical results on large
deviation principles. Then we state our main results: a large deviation principle and a moderate
deviation principle for conditioned sums. Section 3 is devoted to the proofs. In Section 4 we will
show a large deviation principle for the conditional empirical measure it is easily derived from
Theorem 2.3. In Section 5 we discuss the application of our main results to some combinatorial
examples. In particular, we obtain the rate function for the moderate deviations in the context of
random forests. We also discuss possible extensions to more general models.

2 Main results

2.1 Large and moderate deviations

2.1.1 Some generalities

Let us first recall what is a large deviation principle (LDP) (see for example [7, 13]). In the whole
paper, (an) is a decreasing positive sequence of real numbers with limn→∞ an = 0.

Definition 2.1. We say that a sequence (Rn) of probability measures on a measurable Hausdorff
space (U,B(U)) satisfies a LDP with rate function I and speed (an) if:

i) I is lower semi continuous (lsc), with values in R+ ∪ {+∞}.
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ii) For any measurable set A of U :

−I(intA) ≤ lim inf
n→∞

an logRn(A) ≤ lim sup
n→∞

an logRn(A) ≤ −I(cloA),

where I(A) = infξ∈A I(ξ) and intA (resp. cloA) is the interior (resp. the closure) of A.

We say that the rate function I is good if its level set {x ∈ U : I(x) ≤ a} is compact for any
a ≥ 0. More generally, a sequence of U -valued random variables is said to satisfy a LDP if their
distributions satisfy a LDP.

To be self-contained, we also recall some definitions and results which will be used in the
sequel. (we refer to [7, 13] for more on large deviations).

Laplace and Fenchel-Legendre transforms To begin with, let Z be an integer random
variable and define the span of Z by mZ := sup{m ∈ N, ∃b ∈ N, Supp(Z) ⊂ mZ + b}. Let ϕZ
denote the characteristic function of Z. When Z is square integrable, σ2

Z denotes its variance.
For τ lying in dom ψZ := {τ ∈ R : E[exp(τZ)] < +∞}, we define ψZ(τ) := lnE[exp(τZ)] as
the cumulant generating function of Z. Obviously, ψZ is analytic in the interior of dom ψZ .
We denote by RZ the interior of the range of ψ′Z . It is well known that RZ is a subset of the
interior of the convex hull of the support of Z. These two subsets of R coincide whenever ψZ is
essentially smooth (see definition below). Further, let ψ∗Z denote the Fenchel-Legendre transform
of ψZ [7, Definition 2.2.2 p. 26]. For any τ∗ ∈ RZ , there exists a unique ττ∗ ∈ dom ψZ such that
ψ′Z(ττ∗) = τ∗ and we may define Z∗,τ

∗
as a r.v. on N having the following distribution

P(Z∗,τ
∗

= k) = exp[kττ∗ − ψZ(ττ∗)]P(Z = k), (k ∈ N). (1)

It is well known that E
(
Z∗,τ

∗)
= τ∗. For more details on the relationships between ψZ , ψ

∗
Z , Z

∗,τ∗

we refer to the book [3].
Let now (Z,W ) be a random vector of R2. We naturally extend some of the previous notations
to (Z,W ). For example, ψZ,W is the cumulant generating function built on (Z,W ) defined on
dom ψZ,W ⊂ R2 and ψ∗Z,W denotes the Fenchel-Legendre transform of (Z,W ).

Convex functions Let f be a proper convex function on Rk. That is f is convex and valued
in R ∪ {+∞}. We say that f is essentially smooth whenever it is differentiable on the non empty
interior of domf and it is steep. That is, for any vector c lying on the boundary of domf

lim
x→c,x∈int domf

‖∇f(x)‖ = +∞,

where ∇f(x) denotes the gradient of f at point x.

Gärtner-Ellis Corollary.

Corollary 2.2. [Gärtner-Ellis, [7, Theorem 2.3.6 c) p.44]] Let (Zn) be a sequence of random
variables valued in R, (an)n a decreasing positive sequence of real numbers with limn→∞ an = 0.
Define Λn(θ) = lnEeθZn. Assume that

1. for all θ ∈ R, an Λn(θ/an)→ Λ(θ) ∈]−∞,+∞],

2. 0 lies in the interior of dom(Λ(θ)) and Λ(θ) is essentially smooth and lower semi continuous.

Then (Zn) satisfies a LDP with good rate function Λ∗ and speed an.
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2.2 Main results

2.2.1 The model

For n ∈ N∗, let (X(n), Y (n)) be a random vector with X(n) ∈ Z. We assume that (X(n), Y (n))
converges in law to (X,Y ) where X is a non essentially constant integer valued r.v.. Notice that it
implies that ψX is strictly convex, that X(n) is not essentially constant and that ψX(n) is strictly

convex for n large enough. Further let
(

(X
(n)
i , Y

(n)
i )

)
1≤i≤n

be an i.i.d. sample having the same

distribution as (X(n), Y (n)).

Let, for n ∈ N∗ and qn ∈ N∗, Sn = X
(n)
1 + · · ·+X

(n)
qn and Tn = Y

(n)
1 + · · ·+ Y

(n)
qn . In the whole

paper pn will be a sequence of integers such that P(Sn = pn) > 0.

2.2.2 Large deviations

Theorem 2.3. Let pn ∈ Z, qn ∈ N∗, λ ∈ R such that pn/qn ∈ RX(n) → λ ∈ RX . Assume that

1. the functions ψX,Y and ψXn,Yn are essentially smooth, and let τ be the unique real such that
ψ′X(τ) = λ,

2. domψY = domψY (n) = R, and ∀u ∈ R
∣∣∣E [euY (n) − euY

]∣∣∣→ 0 .

3. there exists r > 0 such that Iτ := [τ − r, τ + r] ⊂ (dom ψX) ∩ (∩n≥1dom ψX(n)) and

∀u ∈ R , ∀ s ∈ Iτ , sup
t∈R

∣∣∣E [e(it+s)X(n)+uY (n) − e(it+s)X+uY
]∣∣∣→ 0 . (2)

Then the distribution of (Tn/qn) conditioned by the event {Sn = pn} satisfies a LDP with good
rate function ψ∗X,Y (λ, ·)− ψ∗X(λ) and speed (qn)−1.

2.2.3 Moderate deviations

Let ξ lying in the interior of domψX and consider the random vector (X̌ξ, Y̌ξ) whose distribution
is given, for any k ∈ N and real Borel set A, by

P(X̌ξ = k, Y̌ξ ∈ A) = exp[−ψX(ξ) + kξ]P(X = k, Y ∈ A). (3)

We define in the same way the random vector (X̌
(n)
ξ , Y̌

(n)
ξ ). Obviously, X̌ξ has the same distribu-

tion as X∗,ξ
∗

with ξ∗ = ψ′X(ξ). Further, let α2
ξ be the variance of the residual ε̌ξ for the linear

regression of Y̌ξ on X̌ξ:

ε̌ξ :=
(
Y̌ξ − E

(
Y̌ξ
))
−

cov(X̌ξ, Y̌ξ)

var(X̌ξ)

(
X̌ξ − E

(
X̌ξ

))
. (4)

This variance is the asymptotic variance in the central limit theorem for such conditioned variable
as it can be seen in Theorem 2.1 of [16]. The explicit form of α2

ξ is then

α2
ξ = var

(
Y̌ξ
)
− Cov

(
X̌ξY̌ξ

)2
/var

(
X̌ξ

)
Then we get the following result.
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Theorem 2.4. Let pn ∈ Z, qn ∈ N∗, λ ∈ R such that λ (resp. pn/qn) lies in RX (resp. RX(n))
and pn/qn → λ. Assume that

1. the functions ψX,Y and ψXn,Yn are essentially smooth.

2. there exists r0 > 0 such that

B0 :=]− r0, r0[⊂ (domψY ) ∩ (∩n≥1domψY (n)) ,

and let τ (resp. τn) be the unique real such that ψ′X(τ) = λ (resp. ψ′
X(n)(τn) = pn/qn),

3. there exists r > 0 such that Iτ := [τ − r, τ + r] ⊂ (dom ψX) ∩ (∩n≥1dom ψX(n)) and

∀ s ∈ Iτ , sup
t∈R

∣∣∣E [e(it+s)X(n) − e(it+s)X
]∣∣∣→ 0 , (5)

sup
n

sup
(s,v)∈Iτ×B0

E
(
esX

(n)+v(Y (n)−E(Y̌
(n)
τn ))

)
<∞ , (6)

4. (an) satisfies anqn → +∞.

Then the distribution of
(√

an
qn

(
Tn − qnE(Y̌

(n)
τn )

))
conditioned by the event {Sn = pn} satisfies a

LDP with good rate function J(·) = (·)2

2α2
τ

and speed an.

Remark 2.5. As (qn)−1 = o(an), we say that the distribution of
(√

an
qn

(
Tn − qnE(Y̌

(n)
τn )

))
condi-

tioned by the event {Sn = pn} satisfies a moderate deviation principle (MDP).

Corollary 2.6. If the set of assumptions of either Theorem 2.3 or Theorem 2.4 is satisfied, then
Ln converges in distribution toward’s the degenerate distribution concentrated on E

(
Y̌τ
)
.

3 Proofs

For pn ∈ Z, such that P(Sn = pn) 6= 0, let for u ∈ R

fn(u) :=
1

qn
logE [exp(uTn) |Sn = pn ] ∈ R ∪ {+∞}. (7)

In order to apply Gärtner-Ellis Corollary, we have to prove that fn(u) converges when n → ∞.
The next two subsections yield a simple representation of fn(u) using the Fourier Transform.

3.1 A simple representation using Fourier Transform

Recall that we set ϕZ(t) := E
(
eitZ

)
. An obvious but useful lemma follows.

Lemma 3.1 (Bartlett’s Formula, see Equation (16) in [4]). Let Z be an integer r.v. and W be
an integrable r.v. Then, for any non negative integer k lying in the support of Z,

E [W |Z = k] =

∫ π
−π E[W exp(itZ)] exp(−ikt)dt∫ π

−π ϕZ(t) exp(−ikt)dt
.
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3.2 Some changes of probability

One of the main tool to prove large deviation results is the use of changes of probability. In this
section, we review the different changes of probability used in this paper.

(a) Let λ ∈ RZ . We define τ ∈ dom ψZ by ψ′Z(τ) = λ. We then introduce Z∗,λ as a random
variable valued on N:

P(Z∗,λ = k) = exp[kτ − ψZ(τ)]P(Z = k), (k ∈ N). (8)

We have E(Z∗,λ) = λ. This change of probability is quite classical in large deviation theory.
In order to prove Lemma 3.4, we also define Z(n),∗,pn/qn , replacing Z by Z(n), λ by pn/qn
and τ by τn. Then E

(
Z(n),∗,pn/qn

)
= pn/qn, as needed to apply Lemma 3.2.

(b) For u in domψY , define X̂u by

P
(
X̂u = k

)
= exp

[
−ψY

(
u
)]

E
[
exp

(
uY
)
1I{X=k}

]
. (9)

Similarly, replacing (X,Y ) by
(
X(n), Y (n)

)
, we define X̂

(n)
u . The r.v. X̂u and X̂

(n)
u appear

naturally when applying the inversion of Fourier transform in the proof of Theorem 2.3.

(c) For the moderate deviations, the asymptotic is different (see Theorem 2.4). Therefore the
r.vs. Y (n) have to be centered. The centering factor and the rate function are closely related
to the following change of probability. Let ξ lying in the interior of domψX and consider the
random vector (X̌ξ, Y̌ξ) whose distribution is given, for any k ∈ N and real Borel set A, by

P(X̌ξ = k, Y̌ξ ∈ A) = exp[−ψX(ξ) + kξ]P(X = k, Y ∈ A). (10)

We define in the same way the random vector (X̌
(n)
ξ , Y̌

(n)
ξ ). Obviously, X̌ξ has the same

distribution as X∗,ξ
∗

with ξ∗ = ψ′X(ξ). Further, let α2
ξ be the variance of the residual ε̌ξ for

the linear regression of Y̌ξ on X̌ξ:

ε̌ξ :=
(
Y̌ξ − E

(
Y̌ξ
))
−

cov(X̌ξ, Y̌ξ)

var(X̌ξ)

(
X̌ξ − E

(
X̌ξ

))
. (11)

Note that J(y) = y2

α2
τ

is the rate function in Theorem 2.4. Moreover, the centering factor is

E(Y̌
(n)
τn ). Hence, the change of probability used in the proof of Theorem 2.3 (see change of

probability (9) above) has to be modified, according to this centering factor. This leads to
the change of probability (12) below.

(d) Let τ (resp. τn) be such that ψ′X(τ) = λ (resp. ψ′
X(n)(τn) = pn/qn). Define the random

variable
̂̃
X

(n)
u distributed on N by:

P

(
̂̃
X

(n)
u = k

)
= e−ψỸ (n) (un)E

[
e
uỸ (n)
√
anqn 1I{X(n)=k}

]
, (12)

where Ỹ (n) = Y (n) − E(Y̌
(n)
τn ), un = u/

√
anqn.
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3.3 Laplace lemmas

We begin this section with a variation on a Lemma first due to Laplace, see [11] . To be self
contained we give also the sketch of its proof.

Lemma 3.2. Let pn ∈ Z, qn ∈ N∗, λ ∈ R. Let Z be a non essentially constant square integrable
integer r.v. with span mZ ∈ N∗. Let (Z(n)) be a sequence of non negative i.i.d. integer random

variables also having span mn. Let Z
(n)
1 , . . . , Z

(n)
n be an i.i.d. sample distributed as Z(n). Assume

that

1. ‖ϕZ(n) − ϕZ‖∞ −−−−−→
n→+∞

0,

2. the means of Z and Z(n) are equal respectively to λ and pn/qn with pn/qn −−−−−→
n→+∞

λ,

3. σ2
Z(n) −−−−−→

n→+∞
σ2
Z ,

4. E
(
|Z(n) − pn/qn|3

)
is uniformly bounded.

Then, when n tends to infinity

P

 qn∑
j=1

Z
(n)
j = pn

 =
m√

2πqnσZ
e−

b2

2m2 (cn,mn,bn + o(1)) (13)

with supZ(n) ⊂ mnZ + bn and cn,mn,bn is bounded.

Remark 3.3. Notice that Assumption 1 implies that mn = mZ for n large enough.

Proof: The inversion of the Fourier Transform yields

P

 qn∑
j=1

Z
(n)
j = pn

 =

∫ π

−π
e−ipntϕqn

Z(n)(t)
dt

2π
=

∫ π

−π

[
e
−i pn

qn
t
ϕZ(n)(t)

]qn dt
2π
. (14)

Recall that supZ(n) = mnZ + bn and that mn = mZ for n large enough. Hence, without lost of
generality we assume mn = mZ = m and bn = b for all n. In the interval [0, 2π[, ϕZ(n)(t) =
ϕZ(t) = 1 if and only if t = 2lπ

m for l = 0, . . . ,m− 1.

P

 qn∑
j=1

Z
(n)
j = pn

 =

∫ π

−π
e−ipntϕqn

Z(n)(t)
dt

2π
=

∫ −π/m+2π

−π/m

[
e
−i pn

qn
t
ϕZ(n)(t)

]qn dt
2π
. (15)

Set fn(t) :=
[
e
−i pn

qn
t
ϕZ(n)(t)

]qn
.

∫ −π/m+2π

−π/m
fn(t) =I1 +

m−1∑
l=0

I2,l +
m−2∑
l=0

I3,l + I4

:=

∫ −δ
−π/m

fn(t) +

m−1∑
l=0

∫ 2lπ/m+δ

2lπ/m−δ
fn(t) +

m−2∑
l=0

∫ 2(l+1)π/m−δ

2lπ/m+δ
fn(t) +

∫ −π/m+2π

2(m−1)π/m+δ
fn(t).

(16)
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There exist non negative integer valued random variables Yn such that Z(n) = mYn + b. Set
u = t− 2πl/m.

Then,

I2,l =
1

2π

∫ δ

−δ
ei(u+2lπ/m)(bqn−pn)ϕqnYn(mu)du

=
1

2π
ei2l(π/m)(bqn−pn)

∫ δ

−δ
eiu(bqn−pn)ϕqnYn(mu)du.

On one hand, using a Taylor expansion of order 2 of eitbe
− pn
qn
t
ϕZ(n)(t) = eitbϕZ(n)− pn

qn
(t), we

get

ϕZ(n)− pn
qn

(t) = 1− t2

2
σ2
n − t3E

(
i(Z(n) − pn/qn)3

∫ 1

0

(1− y)2

2
eiyt(Zn−pn/qn)dy

)
,

where σ2
n states for σ2

Z(n) . Now as E(|Z(n) − pn/qn|3) is bounded and as σ2
n → σ2

Z we can find a
positive number (independent of n) δ < π such that for |t| < δ and for n large enough∣∣∣e−i pnqn tϕZ(n)(t)

∣∣∣ =
∣∣∣ϕZ(n)− pn

qn
(t)
∣∣∣ ≤ 1−

σ2
Zt

2

4
. (17)

On the other hand, one has both

ξl := sup
2lπ/m+δ≤t≤2(l+1)π/m−δ

|ϕZ(t)| < 1

and
ξn,l := sup

2lπ/m+δ≤t≤2(l+1)π/m−δ
|ϕZ(n)(t)| < 1.

Further, as ‖ϕZ(n) − ϕZ‖∞ → 0, we get ξn,l → ξl. Let ε > 0 be such that ξl + ε < 1. For n large
enough ξn,l ≤ ξl+ε. |I3,l|, l = 0, . . . ,m−1 are bounded by

(
ξl+ε

)qn/(2π), hence are exponentially
small. In a similar way |I1| and |I4| are exponentially small. To deal with I1, one performs the
variable change mu =

√
qnσZt, and use both (17) and inequality log(1 − θ) ≤ −θ, (θ ∈ [0, 1[)

to conclude by using both central limit and Lebesgue Theorems. It concludes the proof with
cn,m,b =

∑m−1
l=0 ei2l(π/m)(bqn−pn).

We now give an extension of the previous lemma involving not only the probability for the
sum to be equal to the mean of Z(n) but equal to any good rational number.

Lemma 3.4. Let Z be a non degenerated integer r.v. with span m ∈ N∗. Let (Z
(n)
j )j be a sequence

of i.i.d. integer random variables. Let pn ∈ Z, qn ∈ N∗, λ ∈ R such that pn/qn ∈ RZ(n) → λ ∈ RZ .
Let τ (resp. τn) be the unique real such that ψ′Z(τ) = λ (resp. ψ′

Z(n)(τn) = pn/qn). We make the
following assumptions.

1. There exists r > 0 such that Iτ := [τ − r, τ + r] ⊂ (∩n≥1dom ψZ(n)) ∩ (dom ψZ).

2.
∀ s ∈ Iτ , lim

n
sup
t∈R

∣∣∣E [(e(it+s)Z(n) − e(it+s)Z
)]∣∣∣ = 0 . (18)
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Then, when n goes to infinity

P

 qn∑
j=1

Z
(n)
j = pn

 = e
−qnψ∗

Z(n)
(pn/qn) m√

2πqnσZ∗,λ
e−

b2

2m2 (cn,m,b + o(1)), (19)

where σ2
Z∗,λ

is the variance of Z∗,λ defined in (1) and supZ ⊂ mZ + b.

Proof: Using the multinomial formula, we may write

P

 qn∑
j=1

Z
(n),∗,pn/qn
j = pn

 = e
qn( pn

qn
τn−ψZ(n) (τn))P

 qn∑
j=1

Z
(n)
j = pn

 ,

where τn is the unique real such that ψ′
Z(n)(τn) = pn/qn. Hence

P

 qn∑
j=1

Z
(n)
j = pn

 = e
−qnψ∗

Z(n)
(pn/qn)P

 qn∑
j=1

Z
(n),∗,pn/qn
j = pn

 ,

where Z
(n),∗,pn/qn
1 , . . . , Z

(n),∗,λ
n are i.i.d. r.vs. having the distribution defined by

P
(
Z(n),∗,pn/qn = k

)
= exp

(
kτn − ψZ(n)

1

(τn)
)
P
(
Z

(n)
1 = k

)
.

Further, the expectation of this last r.v. is pn/qn. Let us now check the assumptions of Lemma
3.2.

• Assumption 2 of Lemma 3.2 is satisfied by construction of Z(n),∗,pn/qn .

• Let us prove that E
∣∣Z(n),∗,pn/qn − pn/qn

∣∣3 is bounded. Using Hölder inequality we get that

E
∣∣∣Z(n),∗,pn/qn − pn/qn

∣∣∣3 =
∞∑
k=0

∣∣∣∣k − pn
qn

∣∣∣∣3 ekτn−ψZ(n) (τn)P
(
Z

(n)
1 = k

)
= e

ψ∗
Z(n)

(pn/qn)E

(∣∣∣∣Z(n) − pn
qn

∣∣∣∣3 eτn(Z(n)−pn/qn)

)

≤ eψ
∗
Z(n)

( pn
qn

)
(
E
(

(Z(n) − pn
qn

)4e
τn(Z(n)− pn

qn
)
))3/4 (

E
(
e
τn(Z(n)− pn

qn
)
))1/4

.

Using classical arguments on convex functions [23], we get that τn −−−−−→
n→+∞

τ . Hence, by

Assumptions 1. and 2. of Lemma 3.4 we get that E
∣∣Z(n),∗,λ − λ

∣∣3 is bounded.

• Similar arguments yield that

‖ϕ
Z

(n),∗,pn/qn
1

− ϕZ∗,λ‖ → 0 (20)

and that σ2
Z∗n
→ σ2

Z∗ .

Hence all the assumptions of Lemma 3.2 are satisfied and we may conclude using Lemma 3.2.

9



3.4 Proof of Theorem 2.3

Let, for t ∈ R and u ∈ R,

ΦX(n),Y (n)(t, u) := E
(

exp[itX(n) + uY (n)]
)
.

On one hand, using Lemma 3.1, we may write, for u ∈ R and n large enough,

fn(u) =
1

qn
log

∫ π
−π e

−ipntΦqn
X(n),Y (n)(t, u)dt∫ π

−π e
−ipntΦqn

X(n),Y (n)(t, 0)dt
. (21)

Using twice equation (14) we may rewrite (21) as

fn(u) =
1

qn

logP

 qn∑
j=1

X̂
(n)
u,j = pn

− logP (Sn = pn)

+ ψY (n)(u), (22)

where X̂
(n)
u,1 , · · · , X̂

(n)
u,n are independent copies of X̂

(n)
u defined in Subsection 3.2 by equation (9).

In order to apply Lemma 3.4 to X̂
(n)
u,i , let us prove that

∀ s ∈ Iτ lim
n

sup
t∈R

∣∣∣E [(e(it+s)X̂
(n)
u − e(it+s)X̂u

)]∣∣∣ = 0. (23)

We have, for all s ∈ Iτ ,∣∣∣E [(e(it+s)X̂
(n)
u − e(it+s)X̂u

)]∣∣∣ =
∣∣∣E [(e(it+s)X(n)

euY
(n)
e−ψ

(n)
Y (u) − e(it+s)XeuY e−ψY (u)

)]∣∣∣
Now by Assumption 2. of Theorem 2.3 we have e−ψ

(n)
Y (u) = e−ψY (u) + εn, with εn → 0. Hence we

have∣∣∣E [(e(it+s)X̂
(n)
u − e(it+s)X̂u

)]∣∣∣ ≤ e−ψY (u)
∣∣∣E [euY (n)

e(s+it)X(n) − euY e(s+it)X
]∣∣∣+ εn

∣∣∣E [(e(it+s)X(n)
euY

(n))]∣∣∣ .
The right hand side of this last inequality goes to 0 by Assumption 3. of Theorem 2.3. It remains
to prove that pn/qn (resp. λ) belongs to R

X̂
(n)
u

(resp. RX̂u). Since ψX,Y is essentially smooth,

using Proposition 9.7 in [1]RX (resp. RX̂u) is the interior of the convex hull of the support of X

(resp. X̂u) since X and Xu have the same support we have RX̂u = RX . In a similar way, we can
prove that R

X̂
(n)
u

= RX̂(n) . Hence we have pn/qn ∈ RX̂(n)
u

. Applying Lemma 3.4 we obtain, for

u ∈ R
f(u) := lim

n→∞

1

qn
logE [exp(uTn) |Sn = pn ] = −[ψ∗

X̂u
(λ)− ψY (u)− ψ∗X(λ)]. (24)

The convex dual function f∗ of f is given by

f∗(y) := sup
u∈R

[uy − f(u)] = sup
u∈R

(
uy +

[
ψ∗
X̂u

(λ)− ψY (u)
])
− ψ∗X(λ)

= sup
(ξ,u)∈domψX,Y

[
uy + ξ

p

q
− ψX,Y (ξ, u)

]
− ψ∗X(λ)

= ψ∗X,Y

(
p

q
, y

)
− ψ∗X(λ). (25)
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As ψX,Y is essentially smooth, using Theorem 26.3 in [23], we deduce that ψ∗X,Y is essentially
strictly convex. Hence, using once more Theorem 26.3 in [23], we may deduce that f is essentially
smooth. Therefore we can apply Gärtner-Ellis Corollary 2.2 (see Theorem 2.3.6. (c) in [7]) and
conclude.

3.5 Proof of Theorem 2.4

Let T̃n = Tn − qnE(Y̌
(n)
τn ) and

gn(u) = an log
(
E
(
eT̃nu/

√
anqn |Sn = pn

))
.

Proceeding as in the proof of Theorem 2.3, we have

gn(u) = an log

∫ π
−π e

−ipntΦqn

X(n),Y (n)−E(Y̌
(n)
τn )

(t, u/
√
anqn)∫ π

−π e
−ipntΦqn

X(n),Y (n)−E(Y̌
(n)
τn )

(t, 0)

= an

(
logP

( qn∑
j=1

̂̃
X

(n)
u,j = pn

)
− logP

(
Sn = pn

))
+ anqnψY (n)−E(Y̌

(n)
τn )

(u/
√
anqn),

where
̂̃
X

(n)
u,j are i.i.d. r.v. on Z with distribution defined in Subsection 3.2 by Equation (12).

In order to use Lemma 3.4 we first have to prove that

∀ s ∈ Iτ , lim
n

sup
t∈R

∣∣∣∣∣E
[
e(it+s)

̂̃
X

(n)
u − e(it+s)

̂̃
Xu

]∣∣∣∣∣ = 0. (26)

We have ∣∣∣∣∣E
[
e(it+s)

̂̃
X

(n)
u − e(it+s)

̂̃
Xu

]∣∣∣∣∣ ≤ Ce−ψY−E(Y̌ξ0
)(0)
∣∣∣E [e(s+it)X(n) − e(s+it)X

]∣∣∣ ,
which goes to zero by assumption (5). As in the proof of Theorem 2.3 it is easy to prove that
R ̂̃
Xu

= RX and R̂̃
X

(n)
u

= RX(n) .

Using Lemma 3.4 we obtain, for u ∈ R

gn(u)
n→+∞∼ −qnan

[
ψ∗̂̃
X

(n)
u

(pn/qn)− ψ
Y (n)−E(Y̌

(n)
τn )

(u/
√
anqn)− ψ∗

X(n)(pn/qn)

]
.

Define

Hn(h) = sup
ξ∈R

[
ξ
pn
qn
− ψ

X(n),Y (n)−E(Y̌
(n)
τn )

(ξ, h)

]
.

As

ψ∗̂̃
X

(n)
u

(pn/qn) = sup
x

(
pn
qn
x− ψ

X̂
(n)
u

(x)

)
,

11



and
ψ
X̂

(n)
u

(x) = ψ
X(n),Y (n)−E(Y̌

(n)
τn )

(x, u/
√
anqn)− ψ

Y (n)−E(Y̌
(n)
τn )

(u/
√
anqn) ,

we get

gn(u)
n→+∞∼ −qnnan

(
Hn(u/

√
anqn)−Hn(0)

)
. (27)

We claim that if limn hn = 0, then

lim
n

Hn(hn)−Hn(0)

h2
n

= −
α2
τn

2
+O(1). (28)

Assuming that (28) is true, and as α2
τn → α2

τ , we get that

lim
n
gn(u) = −u2α

2
τ

2
.

We easily conclude, since

g∗(y) = sup
u

{
uy + lim

n
gn(u)

}
=

y2

2α2
τ

.

It remains to prove that (28) is true. Recall that

Hn(h) = sup
ξ∈R

[
ξ
pn
qn
− ψ

X(n),Y (n)−E(Y̌
(n)
τn )

(ξ, h)

]
.

In the sequel ψ′x (resp. ψ′y) will denote the partial derivative of ψ
X(n),Y (n)−E(Y̌

(n)
τn )

(ξ, h) with respect

to the first (resp. second) variable. On one hand, by assumption (6), we can define on Iτ × B0

the function Fn by:
Fn(ξ, h) = ψ′x(ξ, h)− pn/qn .

We then deduce from the implicit function Theorem that there exists a neighborhood of (τn, 0)
on which:

Hn(h) = ξn(h)
pn
qn
− ψ

X(n),Y (n)−E(Y̌
(n)
τn )

(ξn(h), h) ,

with

ξ′n(h) = −
ψ′′xy(ξn(h), h)

ψ′′xx(ξn(h), h)
.

We can then compute the derivatives of Hn (in the sequel we omit the argument (ξn(h), h) in the
derivatives). We have (with obvious notations)

H ′n(h) = −ψ′y,

H ′′n(h) =

(
ψ′′x,y

)2
ψ′′x,x

− ψ′′y,y,

H(3)
n (h) =

(
ψ′′x,y
ψ′′x,x

)3

ψ(3)
x,x,x − 3

(
ψ′′x,y
ψ′′x,x

)2

ψ(3)
x,x,y + 3

ψ′′x,y
ψ′′x,x

ψ(3)
x,y,y − ψ(3)

y,y,y .

Replacing the partial derivative of ψ by its expression, we get

H ′n(0) = 0 and H ′′n(0) = −α2
τn .

12



On the other hand, using a Taylor expansion, we get

Hn(hn)−Hn(0) = hnH
′
n(0) +

h2
n

2
H ′′n(0) +

h3
n

6
H(3)
n (zn), zn ∈ [0, hn]. (29)

Hence (29) becomes

Hn(hn)−Hn(0) = −
h2
nα

2
τn

2
+
h3
n

6
H(3)
n (zn), zn ∈ [0, hn]. (30)

Now the expression of H
(3)
n is a rational fraction of some partial derivatives of

E
(
eξX

(n)+h(Y (n)−E(Y̌
(n)
τn ))

)
. The denominator of this rational fraction is bounded away from 0 as

it converges to a variance and numerator is bounded by (6). Hence H
(3)
n is bounded and the claim

is proved.

4 LDP for the conditionnal empirical measure

Let Ln := 1
qn

∑qn
j=1 δY (n)

j

. In this section, we will give a LDP for the law of Ln conditioned on the

event {Sn = pn}.
Lemma 4.1 (exponential tightness). Under the Assumptions of Theorem 2.3 the law of Ln con-
ditioned on the event {Sn = pn} is exponentially tight.

Proof: We set |T |n =
∑qn

i=1 |Y
(n)
i |. For δ > 0 set Kδ = {ν ∈ M1(R),

∫
|x|ν(dx) ≤ δ}. Now for

any u > 0

P (Ln ∈ Kc
δ |Sn = pn) = P

(
qn∑
i=1

|Y (n)
i | > δqn|Sn = pn

)
≤ e−qn(δu−gn(u))

where

gn(u) :=
1

qn
logE [exp(u|T |n) |Sn = pn ] ∈ R ∪ {+∞}.

The last inequality is obtained using Markov inequality (note that the Assumptions of Theorem

2.3 imply that E
(
euY

(n)
)
<∞, ∀u).

Now we apply Theorem 2.3 to |Y (n)
i | and get that limn gn(u) := g(u) where g(u) is the analogue

of f(u) see (24) when Y
(n)
i is replaced by |Y (n)

i |. This concludes the proof of Lemma 4.1.

Theorem 4.2. Under the Assumptions of Theorem 2.3 the law of Ln conditioned on the event
{Sn = pn} satisfies a LDP with good rate function

Λ∗(ν) = sup
ϕ∈Cb(R)

{< ϕ, ν > −Λ(ϕ)}, ν ∈M1(R),

where, for ϕ ∈ Cb(R),

Λ(ϕ) := logE(e
<ϕ,δY n1

>|Sn = pn).

Proof: We proceed exactly as for the classical proof of Sanov Theorem (see for example Theorem
6.2.10 in [7]). The finite dimensional LDP is a straightforward application of Theorem 2.3, and
the exponential tightness has been proved in Lemma 4.1.
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5 Examples

In this section we give two examples of applications and one counter example. These examples
are borrowed from [16].

5.0.1 Occupancy problem

In the classical occupancy problem (see [16] and the references therein for more details), m balls are
distributed at random into N urns. The resulting numbers of balls Z1, · · · , ZN have a multinomial
distribution, and it is well-known that this equals the distribution of

(
X1, · · · , XN

)
conditioned

on
∑N

i=1Xi = m, where X1, · · · , XN are i.i.d. with Xi ∼ P(λ∗), for an arbitrary λ∗ > 0. The

classical occupancy problem studies the number W of empty urns; this is thus
∑N

i=1 1l{Xi=0}
conditioned on

∑N
i=1Xi = m.

Now suppose that m = pn →∞ and N = qn →∞ with pn
qn
→ λ. Take X

(n)
i ∼ P(λ∗n). Note that

we do not assume that λ∗n = pn/qn and λ∗ = λ which is the case in Janson’s work. It is easy to
see that Assumption 3. of Theorem 2.3 is fulfilled and that ψX,Y is essentially smooth. Moreover,
for (x, y) ∈ R2 and λ > 0, we have

ψX(x) = −λ∗ + λ∗ex,

ψ∗X(λ) = λ log(
λ

λ∗
) + λ∗ − λ,

ψX,Y (x, y) = −λ∗ + log
(
eλ
∗ exp(x) − 1 + ey

)
.

Hence we can apply Theorem 2.3. Here the function ψ∗X,Y does not have any explicit form. We give
in Appendix the graph of the rate function for some particular values of λ and λ∗. Assumptions
of Theorem 2.4 are obviously fulfilled. We have

E
(
Y̌ (n)
τn

)
= e−λ

∗
n exp(τn),

P(X̌τ = k) = e−λ
∗ exp(τ)(eτλ∗)k/k!.

Hence X̌τ is Poisson with parameter λeτ . An easy calculation gives

cov
(
X̌τ , Y̌τ

)
= −λ∗eτe−λ∗ exp(τ),

Var(Y̌τ ) = e−λ
∗ exp(τ)(1− e−λ∗ exp(τ)).

Hence α2
τ = e−λ

∗ exp(τ)
(

1 − e−λ
∗ exp(τ) + λ∗eτe−λ

∗ exp(τ)
)
. Now, as τ = log( λλ∗ ), we get J(.) =

(.)2eλ
∗

1−e−λ∗+λ∗e−λ∗
in the particular case where λ∗ = λ. Notice that a functional LDP is given in [5].

Remark 5.1. Theorem 2.3 allows us to deal with other statistics than
∑n

i=1 1l{Xi=0}. For example,
statistics of the form

∑n
i=1 f(Xi, Zi) where Z1, . . . , Zn are i.i.d. and independent from X1, . . . , Xn.

Let us describe the particular case of bootstrap see [8]. Let Z1, . . . , Zn be i.i.d. real valued random
variables, We choose from (Z1, . . . , Zn) at random with replacement a m sample Z∗1 , . . . , Z

∗
m. Then∑m

i=1 f(Z∗i ) is distributed as
∑n

i=1Xif(Zi) conditioned on
∑n

i=1Xi = m, where Xi ∼ P(λ) , i =
1, . . . , n for any λ > 0. Hence we get the same kind of conditioning as for the occupancy problem.
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5.0.2 Branching processes

Consider a Galton-Watson process, beginning with one individual, where the number of children
of an individual is given by a random variable X having finite moments. Assume further that
E(X) = 1. We number the individuals as they appear. Let Xi be the number of children of the
i−th individual. It is well known (see example 3.4 in [16] and the references therein) that the
total progeny is n ≥ 1 if and only if

Sk :=
k∑
i=1

Xi ≥ k for 0 ≤ k < n but Sn = n− 1 . (31)

This type of conditioning is different from the one studied in the present paper, but Janson proves
[16, Example 3.4] that if we ignore the order of X1, . . . , Xn, conditioning on (31) is equivalent to
conditioning on Sn = n − 1. Hence we can study variables of the kind Yi = f(Xi). Considering
the case where Yi = 1l{Xi=3}, the

∑n
i=1 Yi is the number of families with three children. Now

choosing Xi ∼ P(λ), we compute the rate function as in Example 5.0.1.

5.0.3 Random forests

The model
Consider a uniformly distributed random labelled rooted forest with m vertices and N < m roots.
Without loss of generality, we may assume that the vertices are 1, . . . ,m and, by symmetry, that
the roots are the N first vertices (that is 1, . . . , N). Following [16] this model can be realized as
follow:

1. The sizes of theN trees in the forest are distributed asX1, . . . , XN conditioned on
∑N

i=1Xi =
m, where Xi are i.i.d. with the Borel distribution for some arbitrary µ ∈ )0, 1/e]. Recall
that X has the Borel distribution with parameter µ ∈ ]0, 1/e] if

P
(
X = l

)
=

1

T (µ)

ll−1

l!
µl, l ∈ N∗, z ∈ ]0, 1/e] , (32)

where T (µ) =
∑∞

l=1
ll−1

l! µ
l is the well-known tree function. In the following we use classical

properties of T (see e.g. [10]).

2. Further the tree number i is drawn uniformly among the trees of size Xi

A classical quantity of interest is the number of trees of sizeK in the forest (see e.g. [18, 20, 21]).
It means we choose Yi = 1l{Xi=K}. Let us now assume that we conditione on

∑N
i=1Xi = m with

m = pn → +∞, N = qn → +∞ with pn/qn → λ. Take X
(n)
i ∼ Bo(µn) with µn → µ ∈ ]0, 1/e].

It is easy to see that the assumptions of Theorem 2.3 are satisfied. We do not have any simple
expression for ψ∗X,Y and hence for the rate function. Concerning moderate deviations, it is easier
to see that the assumptions of Theorem 2.4 are satisfied. We have

E
(
Y̌ (n)
τn

)
= e−ψ

(n)
X (τn)eKτnP(X(n) = K),

P(X̌τ = k) = e−ψX(τ)ekτP(X = k).
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A calculation gives

cov
(
X̌τ , Y̌τ

)
= e−ψX(τ)eKτP(X = K)

K − +∞∑
j=1

je−ψX(τ)ejτP(X = j)

 ,

Var(Y̌τ ) =
+∞∑
j=1

j2e−ψX(τ)ejτP(X = j)−

+∞∑
j=1

je−ψX(τ)ejτP(X = j)

2

.

To give an explicit formula for the rate function let us consider the particular case where µ = λ.

In that case we have α2
τ = e−1e1/µ2

(
1− e−1e1/µ2

+ 1
µ3(µ+1)

)
. Now applying Theorem 2.4 we get

J(.) = (.)2

2α2
τ
.

5.0.4 Hashing

The model
Hashing with linear probing can be regarded as throwing n balls sequentially into m urns at
random; the urns are arranged in a circle and a ball that lands in an occupied urn is moved to
the next empty urn, always moving in a fixed direction. The length of the move is called the
displacement of the ball, and we are interested in the sum of all displacements which is a random
variable noted dm,n. We assume n < m.
After throwing all balls, there are N = m − n empty urns. These divide the occupied urns into
blocks of consecutive urns. For convenience, we consider the empty urn following a block as
belonging to this block. Janson [15] proved that the length of the blocks (counting the empty
urn) and the sum of displacements inside each block are distributed as (X1, Y1), . . . , (XN , YN )
(N = m − n) conditioned on

∑N
i=1Xi = m, where (Xi, Yi) are i.i.d. copies of a pair (X,Y ) of

random variables. X has the Borel distribution

P
(
X = l

)
=

1

T (λ)

ll−1

l!
λl, l ∈ N∗, z ∈ [0, e−1[ , (33)

where T (λ) =
∑∞

l=1
ll−1

l! λ
l is the well-known tree function and λ is an arbitrary number with

0 < λ ≤ e−1. The conditional distribution of Y given X = l is the same as the distribution of
dl,l−1.
Unfortunately, using Janson’s results [10, 15, 16], we can prove that the joint Laplace transform
of (X1, Y1) is only defined on (−∞, a)× (−∞, 0) for some positive a. Hence our results can not be
applied. Nevertheless, in a forthcoming work, we will study conditioned L.D.P for self-normalized
sums in the spirit of [24]. In that case the Laplace will be defined.

5.0.5 Bose-Einstein statistics

This example is borrowed from [14]. Consider N urns. Put n indistinguishable balls in the urns
in such a way that each distinguishable outcome has the same probability i.e.,

1/

(
n+N − 1

n

)
,
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see for example [9]. Let Zk be the number of balls in the kth urn. It is well known that (Z1, . . . , ZN )
is distributed as

(
X1, · · · , XN

)
conditioned on

∑N
i=1Xi = n, where X1, · · · , XN are i.i.d. with

a geometric distribution. As for Example 5.0.1, we can get a L.D.P for variables of the form∑
i h(Xi) if domψh(Xi) = R.

5.0.6 Possible extensions

Among possible extensions, let us mention the case where the variables Yi are independent but do
not have the same distribution. This case occurs in [14, Examples 2 and 3], where the quantity of
interest is the law of

∑N
i=1 hi(Xi) conditioned on the event

∑N
i=1Xi = n. Another way to extend

our work is to deal with the case where the variables Xi are independent but not i.i.d.. This case
occurs when counting from a random permutation the number of cycles of a fixed size see for
example [2, Chapter 1]
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