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Abstract

One major concern of climate change is the péssise of temperature extreme events, in
terms of occurrence and intensity. To study thisn@menon, reliable daily series are required
for instance to compute daily based indices: higlepguantiles, annual extrema, number of days
exceeding thresholds etc. Since observed seriedikaly to be affected by changes in the
measurement conditions, adapted homogenizatioregures are required. While a very large
number of procedures have been proposed for adpmstof observed series at a monthly time
scale, few have been proposed for adjustment of tlanperature series. This article proposes a
new adjustment method for temperature series abily dme scale. This method, called
SPLIDHOM, relies on an indirect non-linear regressimethod, estimation being ensured by
cubic smoothing splines. This method is able toemirthe mean of the series as well as high
order quantiles and moments of the series. Whengusiell correlated series, SPLIDHOM
improves the results of two widely used methodsnkis to an optimal selection of the smoothing

parameter. Applications on the Toulouse temperateries are shown as real example.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1. Introduction

Extreme indices have recently been used by ateyr@art of the climatological community to
assess the impacts of extreme events on our sdkikeiy Tank et al., 2009). Computing extreme
indices requires reliable daily data. Thus the tgueaent of suitable techniques to homogenize
daily data is necessary.

Homogenization of temperatures at a daily ticeesis much more difficult than at monthly or
annual scales. This is not due to the detectia®hiffs, since this information may be provided by
the analysis of annual or monthly series. Thus thisnainly an adjustment problem. When
considering annual or monthly data, the effecthefthanges affecting the series can be assumed
to be a bias that may vary according to the seaBoese biases are quite easy to estimate and
remove using linear techniques (Caussinus and ®Bexd04). But this is no longer the case when
daily temperature data are processed, where adjussmshould vary according to the
meteorological situation of each day. Differenaeshelter radiative properties may dramatically
influence observations, as shown in shelter intengarison experiments (Lefevre, 1998). For
example, on average, the difference between a @tdnBrench BMO 1050 shelter and a
“CIMEL” shelter, that was provided to non-professab observers is of around +0.5°C, but for
individual days this difference may rise up to €8This occurs especially during hot sunny days
with little wind, where the natural ventilation tifis small shelter fails to compensate radiative
heating. A recent inter comparison study of 9 wideded screens also shows increasing absolute
temperature differences with decreasing cloud cewet wind speed (Brandsma and Van der
Meulen, 2008).

For temperature adjustment, multiple regressmdels, including other parameters such as
wind-speed and direction, sunshine duration andllghrmeasurements, are the best way to

proceed, as achieved for the De Bilt series (Bravad®t al., 2002, Brandsma, 2004). The
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Netherlands Meteorological Institute (KNMI) has keall original instruments as well as
complete metadata and photographic archives ofdhleer site positions environment. Using this
unique material, Theo Brandsma et al. (2002) weéte to carefully plan parallel measurement
experiments, not only for temperature measuremdnis,also for windspeed and sunshine
duration. But the conditions in which the De Bi#ries was homogenized are rather unique.
Windspeed or sunshine duration data are extrensly when considering older data, where
usually only precipitation and temperature wereeolsd. Furthermore, metadata simply do not
exist in many cases. Reproducing the old measuremenditions (Brandsma et al., 2002,
Brandsma, 2004, Brunet et al., 2004, 2007) is a wagorrect the series. But this approach is
expensive, time consuming, and requires waitingng ftime to get a sufficient archive after the
experiment has started.

For these reasons, some authors have limitedsitlges to assess homogeneity using graphical
analysis of time series of annual indices derivexnf daily data to suppress inhomogeneous
stations from any further analyses (Peterson e2@02 or Aguilar et al., 2005).

If there is a need for daily data adjustmeng thost simple adjustment method relies on
interpolation of monthly adjustment coefficientsirfgent et al., 2002 — denoted Vincent Method
in the following), a procedure also applied by Mapet al. (2002), Brunet et al. (2006) to obtain
a better performance in the calculation of extrentices based on daily-temperature. But this
method provides adjustments only for the mean ofnlimmogeneity, not for its higher order
moments. Note that in Brunet et al. (2006), dat “are-homogenized” by means of transfer
functions obtained through shelter intercomparisxperiment, before applying Vincent's
method.

Other methods characterize the changes of ttiee efistribution function using overlapping

data between observing systems. Trewin and Tré¥®96) use overlapping observations
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between temperature observing systems (when teesiechange in shelter type or location for
example) to build a transfer function between thebRbility Density Function (PDF) of the old
and new measurement system. Their method was usellomogenize Australian daily
temperature measurements (Trewin, 2001). DellaaMamd Wanner (2006) use a similar
approach that models the changes to PDFs, howkedees not need overlap observations and
instead uses information from nearby referenceosisit The main improvement of this method,
called HOM, compared to Trewin and Trevitt (1996)he use of a non-linear model making it
capable to deal with inhomogeneities in higher maeThis method has been applied to
summer daily maximum temperature at 26 westernf&ao stations (Della-Marta et al., 2006).

In the following, we propose a variation of tR®M method for homogenization of daily
measurement temperature series. Although parteoptimciple involved is quite similar, relying
on the definition of homogeneous sub periods, wep@se a very different direct non-linear
spline regression approach rather than a adjustbes®d on quantiles. Our proposed method is

then referred as SPLIDHOM (SPLIne Daily HOMogeniza).

The SPLIDHOM model and the cubic smoothing spkstimation are described in section 2.
In section 3, a simulation study is realised, byanseof bivariate autoregressive models. This
simulation allows compare SPLIDHOM, HOM and Vincenadjustments. Advantages and
drawback of each method are then discussed. Inosedt the example of Toulouse daily

minimum temperature (TN) series demonstrates thilress of SPLIDHOM method.

2. Methodology

Our goal is to provide realistic adjustmentsimdividual temperature measurements of a
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candidate series Y (the series to be adjustedgndive temperature of the series itself, by means
of an estimated transfer function. The estimatidérthis function has to be possible even in
absence of overlapping parallel measurements. ihik2ella-Marta and Wanner (2006), we rely
on the existence of a close and well correlatedresice series X. This reference series does not
necessarily need to be totally homogeneous, butldhme homogeneous on sub periods of at
least two years around each break affecting thelidate series, since i) fitting spline models
require a minimum amount of data and ii) data basowver a range of situations large enough, in
order to avoid extrapolation of the functions. Nthtat definition of homogeneous sub periods

provided in the notation section is exactly the sas in Della-Marta and Wanner (2006).

a. Notation

In the following, we denote Y the candidate egriand X the reference series. Let j=1,...,k be
the set of change-points affecting Y. For practiglglorithmic reasons, we introduce dummy
change-points j=0, corresponding to the last oladEm of Y, and k+1 corresponding to the day
before the first observation of Y. Note that 1 refeo the most recent non-dummy change-point,
while k is the most ancient one. Let us denote ks Ehe homogeneous subperiod of X after the
j™ change-point on Y and H&F: the homogeneous subperiod of X before (see figirdhe
homogeneous subperiod on Y between change-paamid j-1 is denoted HSP Since X may be
affected by change-points also, homogeneous sultiseHSRair, HSRj.10et may be shorter than
HSR;;. Let myxair be the non-linear regression function of Y on ¥athe f" change-point, and
Myxjber the non-linear regression function of Y on X befte " change-point, while RYjbef IS

the non-linear regression function of X on Y beftire {" change-point.
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b. Model

The change-point effects are adjusted sequbntisdm the most recent (1) to the most ancient
one (k). The last period H$Premains unchanged. Adjustment is first appliedH&R,, then
HSR/; up to HSRy+1. For adjustment of the whole sub period KSP(corresponding to the
effect of thet]1 change-point) the first step is to estimatgpar (respectively mjar), that is the
regression of Y on X before (resp. after) the breakHSRuer (resp. HSRai) subperiods (Fig

1).

Fig. 1 about here

If there is a change, Wper and Myxjae do Not coincide, and their difference sy xjper=Myxjatt-
Myxjper IS NOt NUIl at least on parts of the data rangke adjust HSP.1 so that mixjper regression
function matches the regression: estimated on HSR. Thus, adjustments are given by the

estimation of Mijatt-yxjber (deNoted My, .« yxper )- A Straightforward calculation shows that

conditional to X, if estimates of yRper and Mxjarr are unbiased, then their difference is an
unbiased estimator of yRaft-vxjbef =Myxjatt-Myxjoer. ANY Observed value (fnay be adjusted using

this function and the correspondingvélue, according to:

Yt* =Y, +rﬁYXjaft—Yijef (Xt) 1)
were Y* is the adjusted value according to (1). At thisge, if reference X is homogeneous on
HSR.1, (that is, HSR.1 and HSRj,er coincide) adjustments can be directly applied tbeYore

the {" change-point using (1). But in the general casference X itself might be

inhomogeneous, or missing, on parts of HSPSo an additional step is performed. Thegpa
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regression function is estimated. This is the regjom of X on Y for subperiod H§Ber. It allows

the substitution of ¥into “pseudo” X values: X, =, (Y,) in equation (1) M, denoting
the estimation of Bjper ON HSRjper. Finally, the SPLIDHOM adjusted observati \?tsare given

by:

~

Y, =Y, +m

A

Meyeer (V) ()

Y Xjaft =Y Xjbef (
In the following, the tern My, .. yxiser (r“nm.bef (\()) is called adjustment or adjustment function.

While based on the same definition of sub peridtthn HOM, the adjustment proposed by
SPLIDHOM differs in its principle. SPLIDHOM is bageon regression only, while HOM is
based on distribution fitting. Note that in the gireal implementation of our algorithm, the

model may be applied for each month or each seseymarately.

c. Fitting

In practice, the various regressions involvesl @most linear, while a large proportion of the
useful information is hidden in the non linear paft the regressions. For estimating the
regression function, several techniques have bested: kernel smoothers (Brockman al,
1993, too noisy at the edge for data scarcity mesisavavelet thresholding (Nason, 2008, too
sensitive to small outliers) and LOESS (Clevelamdl &rosse, 1991, too computationally
demanding when applying for cross-validation tegbes). Our final choice relies on classical
cubic smoothing spline that does not have the pusly mentioned drawback for our
application. In the following we recall the basiock smoothing spline. Readers may refer to

Hastie and Tibshirani (1990) for a more completeraiew of this technique.
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Cubic smoothing spline are the solution of thkofving optimization problem: let (Xi, Yi) for
i=1...n be a sequence of observations, modeled byetlagion E(¥|X;)=m(X;). The smoothing
spline estimate is defined as the functign (over the class of twice differentiable functions,
denoting m” the second derivative of m akdhe smoothing parameter) that minimizes the

penalized residual sum of squares:

S (Y, =m (X)) +A [ (m (1))t

i=1
Interval [a,b] corresponds to the range of X. Tiisblem has a unique (and explicit) solution
which is a natural cubic spline with knots at thalues X This model may seem over
parameterized, but spline continuity constraintsnatts bring down its dimension dramatically.
Smoothing parametar (A=0) controls the trade-off between fidelity to thetaland roughness
of the function estimate. Larger valueshatorrespond to smoother solutionsA i o, m”(t) -0
and the minimiser is the least squares line. Theoshing parameter is estimated for each
regression by means of a standard cross-valid&tidmique, in order to avoid over fitting. Let
M, be the solution for a given valie obtained leaving out observation i — which mimics
training and test sample procedures. Estimatesithe value that minimizes the cross-validation

sum of squares:

This cross-validation technique gave satisfactesgults in our application, selecting most of the
time solutions having an equivalent degree of foeedrom 2 to 4, roughly corresponding to
degree 1 to 3 polynomials. This is a significaritedence to HOM, where the LOESS smoothing

parameter is fitted rather empirically, as statedhe authors themselves.
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Since the range of the data within different HSBn be different, we often face an additional
extrapolation problem. Linear extrapolation okviges IS easy to achieve, but extrapolation of
Myxjaft-yxjoer May lead to incorrect results. So, we also cheos®und adjustments at the edges,
as in HOM method. Practically, adjusting valuesatge (resp. lower) that the largest (lowest)
observed value of X on the estimation interval esfgrmed using adjustment computed for the

largest (resp. lowest) observed value of X on 8temation interval.

3. Results

a. Simulation study

This experiment has two purposes: first, estalthghcorrelation necessary to obtain good results
with HOM and SPLIDHOM methods, then show SPLIDHORprovements compared to
Vincent's and HOM results on a variety of situasonVe show the influence of HOM,
SPLIDHOM and Vincent's method on several indicesmpated on daily maximum
temperatures, including Root Mean Square Error (EM@&nnual mean, summer (JJA) mean,
Q05 and Q95 quantiles, and annual absolute maxitemperature.

Data are simulated according to the following scheifoulouse daily maximum temperature
(TX) series is decomposed into seasonal, trendnamgk component using moving averages of
width equal to one year, according to a classiddliteve model (Brockwell and Davis, 2006).
Result of this decomposition is shown in figureTBe random component is then modeled as an
AR(1) process. The estimation of first order autogation is equal to 0.672, while the noise
component of the AR(1) process is found to havéamae equal to 8.6°C2. Pairs of correlated
candidate and reference series are then simulated) uhe following procedure. First, we
generate correlated noise termg d@nd U; by means of a bivariate AR(1) process; U}

(Neumaier and Schneider, 2001) described herematfte

10
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Uu,=¢,U. . +¢ € 0 1r
{ A vectore, :( “]~ N([ j,o{ D
U, =0¢,U, +€, €t 0 rl

that is the noise term {{J U,} of the process follows a centered bivariate ndrdistribution,
correlation betweeml; ande, being controlled by parameter r. Practically wedse¢,=0.672,
02=8.6, that are values estimated on real Touloaisgéerature series. Pairs of series are created
summing the same trend and seasonal (estimatedwaouBe temperatures) to the noise terms U
(first series) and kJ(second series). Inhomogeneities are added tdir8teseries to create the
candidate, the second series being the reference.

We choose to add three different synthetic inhomegges to the candidate series, to study a
variety of situations: type | inhomogeneity consist adding a normal random variable of mean
—-1.5°C and standard deviation 0.5°C to the dailadptire noise). This “Type I” inhomogeneity
roughly reproduces temperature independent efforsexample, an error related to sun exposure
is likely independent of the actual observed terajuee, since it may occur on hot days as well
on cold late winter days with snow cover. Typenlhd@mogeneity consists in transforming data
using transfer function-tt+(t-18)/10+% (¢ being random normal noise with standard deviation
0.2°C). Type Il inhomogeneity enlarges the distiifiu of daily data. Type Il transfer function is
given by t-t+(e"19/20+, (€ defined as in type Il). Type Il results in largskewness. We
applied type | to period 1966-1970, type Il to pds 1951-1965 and 1986-1995, and type Il to
periods 1971-1985, to study the adjustment of mleltinhomogeneities of various types in the

data. The effect of such transforms on ToulouselBXibution is shown in figure 3.

Fig. 3 about here

11
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For r taking values 0.80, 0.85, 0.90, 0.95, 0.96700.98 and 0.99, 50 pairs of candidate and
reference series are generated. Candidate seriegh() is then perturbed as described
previously, to give the “raw” candidate. Raw cardélseries is then adjusted using HOM and
SPLIDHOM methods. A pseudo-Vincent method is alsedu for each sub period, 12 monthly
adjustment coefficients are computed, computingnieathly mean differences between “truth”
and “raw” over the whole sub periods. Since thagtemates are much more accurate than they
would be in reality, noise is added, consistingirandom centered normal variable of standard
deviation 0.3, which is roughly the standard erstimate observed on monthly adjustment
coefficients computed using Caussinus and Mes®84RANOVA model. The annual cycle of
adjustments is then interpolated using spline ascri®ed in Vincent's method. Note the
multivariate ANOVA model takes all available montisleries in a regional neighborhood. In this
experiment, we consider that average regional mitaensity does not vary — but that r can take
a wide range of values within the regional network.

For each correlation and for 50 pairs of simulatedes, we compare differences between “true”
candidate and “RAW” series, and differences betwierre” candidate and series adjusted by
means of Vincent's method, HOM and SPLIDHOM, onaaiety of indices: root mean square
error of the adjusted daily valugs “truth” (RMSE), and annual indices, such as annmaans
(average of the 365 values), annual absolute mimrand maximum temperatures (respectively
lowest and highest temperature that occurred duhiagyear), annual quantiles Q95 and Q05 of
the daily values of the considered year. For eamhelation, we compute boxplots of the 50
corresponding RMSE, as well as boxplots of diffeesn(“raw” minus “true” or “adjusted” minus
“true”) observed on annual indices (for each sinadaseries, and each year). Results for r=0.80,
0.90 and 0.98 are provided in figures 4, 5 and &feet adjustments would result on null

differences and RMSE.

12
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Figures4, 5 and 6 about here

From these results, a number of comments can be:mad

all three methods improve the data: inhomogenegtieseduced, when comparing
adjusted series to raw series;

Vincent method is able to correct the means (anrlJ&l) and outperforms both
HOM and SPLIDHOM for lower correlations, in termERMSE, but is strongly
biased regarding adjustment of annual maxima akasegxtreme quantiles. The
bias of the annual maxima, Q95 and QO5 is abouyt0l40and -0.4°C respectively
using the Vincent Method (Figure 6 bottom panei)ur experiment.

HOM and SPLIDHOM improvements compared to Vincaet laardly noticeable
for r<0.90. For example, when r=0.8, the bias ofumh maxima, Q95 is about 0.8
and 0.4°C respectively for SPLIDHOM; but higher reteitions ensure for both
HOM and SPLIDHOM a good adjustment of the meansd aignificant
improvements for extreme quantiles.

SPLIHOM clearly performs better than HOM in ternisRMSE.

Since r is really a crucial parameter, we plot raedand inter quartile range of RMSE for the

three methods as a function of r, for each of tozes.

Figure 7 about here

13
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This confirms that both HOM and SPLIDHOM need welbrrelated series (r>0.90) to
outperform Vincent method, in terms of RMSE andsbraduction for extreme quantiles.
Performances of Vincent Method are less sensitivevalue, at least for the range of correlations
we tested. Regarding comparison of HOM and SPLIDH@MLIDHOM clearly exhibits lower
RMSE. Adjustment of annual maxima is equivalentldoth methods, but SPLIDHOM performs
generally better than HOM for means (annual and &l Q05. Regarding Q95, SPLIDHOM is
more biased for€0.90 but gets the best results for r>0.96. If weghdy consider that SPLIDOM

is superior to Vincent Method for a correlation @©0, and delivers trustful results at a
correlation of 0.95, those correlation thresholdsreot anecdotic. For maximum temperatures, on
a flat terrain region such as Paris region, a tatios of 0.95 (respectively 0.90) is achieved for
an approximate station distance of around 75knp(r@ound 150 km). In the more mountainous

area around Lyon, those distances are respecti®y and 60 km (not shown here).

b. Application on Toulouse-Blagnac temperatureeseri

Toulouse-Blagnac (Toulouse civil airport, praiesal station, index number 31069001)
minimum (TN) and maximum (TX) temperatures series afected by several abrupt change-
points. Those changes are detected using PRODI@G&ase (Caussinus and Mestre, 2004) that
relies on multiple pairwise comparisons of annuallduse series with regional neighbors.
Statistical detection itself is performed by measfs a dynamic programming algorithm
(Hawkins, 2001) to find position of changes togethéth an adapted penalized likelihood
criterion (Caussinus and Lyazrhi, 1997) assessiggifcance of changes. Metadata allows

validate those detections and provide causes aecispr days for changes: 1962/06/20 (new

14
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instrumental park), 1968/10/15 (relocation, newltelng 1972/05/01 (sensor change), 1986/06/17
and 1991/11/08 (for both, relocations of instruraépark, due to construction of new runways).
The reference data is provided by Toulouse-Fraheeges (French “Armée de I'Air” station,
military airport), situated 12km south of TouloWBkagnac airport. This series is affected by a
large change-point in 1955/11/14 (relocation anelteh change). Toulouse-Blagnac series starts
in 1951. Correlation of the series is high: r=0(@8Ba daily time scale, seasonal cycle removed),
justifying the use of SPLIDHOM technique. Changénp@ffects are adjusted sequentially, for
each season, from period before the most recemtgehpoint (1991) to the most ancient one
(1962). On this example, we choose seasonal estimsatinstead of monthly, since the results
appeared to be more stable. Let us analyze inl geetaod 1986-1991, for autumn season (SON
for September-October-November months). Figure l&aws the scatterplot of observed daily
Toulouse-Blagnac TN (candidate Y) as a functiodafy Toulouse-Francazal TN (reference X),
for homogeneous subperiod 01/09/1986-08/11/1994,SION season. The solid grey line
corresponds to the smoothing spline estimatioregfassion function myer. Similarly, Figure

8b shows the scatterplot of daily data and estomatf regression function yRar, after the
target change on 8/11/1991, for SON season, ovepstiod 08/11/1991-30/11/2009. Fig. 8c
shows the estimation of this difference of theelattivo functions, as a function of X (Toulouse-
Francazal). This corresponds to the estimatiom@fftinction Mx;at-vxjper iN €quation (1). In this
example, Mxr-vxjper Can be considered linear. Estimation of thgyss additional transfer

function used in equation (2) is also provided ig. Bd. Fig. 9 shows the estimated SPLIDHOM

adjustment functior My yxioer (ﬁr;(ijef (\()) Note that, given the precision of the original

database, the final adjustment function is rountted precision of 0.1°C, which explains its

15
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staircase behavior. For autumns 1986 to 1991, ladgistments are observed for low
temperatures (up to +0.8°C), being almost nulMfarmer temperatures.

Fig. 8, 9 about here
When analyzing the correction of the previous bré86) for the same SON autumn season,
we find a rather different shape (Fig. 10 and The estimation of Fxja-vxjoer IS NOt linear (Fig.
10c), resulting in a non-linear adjustment funct{rg. 11), thus justifying the use of non-linear
models in SPLIDHOM. When analyzing adjustments afilduse series for every breakpoint and
every season, roughly half of the adjustment fumstihave a linear or quasi-linear (including

constant) shape, the other half exhibiting a noadr shape.

Fig. 10, 11 about here

The examples given above show that adjustmdntsiromethod are sensitive to temperature
itself, thus taking into account in a crude way eoedlogical situation of each day. This is the
main contrast and improvement to the adjustmentthe®fmethod provided by Vinceset al.
(2002). This method depends on the seasonal \arg@atf monthly adjustments, and of the
position of the day in the year. It is indeed sienfd apply, and it keeps coherency between usual
homogenization methods (applied to annual and niprdhta) and daily adjusted data, but
adjustment of higher quantiles is a bit less réalias shown by the experiment study.

In addition, it can be shown that our methodches also a good agreement with standard
homogenization procedures: comparing time seriemnafial means of TN, homogenized using
SPLIDHOM (daily homogenization) and by means of FBRGE software (monthly
homogenization, Caussinus and Mestre, 2004), we fary close results (Fig. 12). This is a

remarkable result, since PRODIGE method relies arorapletely different principle, where

16
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mean biases are estimated using an ANOVA (ANal@diy¥ariance) model, applied on a large
set of monthly series in the same climatic areaelVtonsidering annual averages, we get very

similar results using by two completely differen¢timods applied independently.

Fig. 12 about here

4. Conclusion

Although part of the principle involved in HOMiéh SPLIDHOM are quite similar, especially
the definition of sub periods, SPLIDHOM adjustmediffer: they are based on non-parametric
regression (by means of cubic smoothing spline)levhiOM involves fitting data to several
candidate distributions. The use of a smoothincampater set by means of cross-validation
avoids over fitting during the estimation proce&s simulated examples, our SPLIDHOM
technique is shown to improve HOM (especially inmte of RMSE) and Vincent's method for
the correction of extreme quantiles if correlatierhigh enough, since application of the latter
should not be neglected when correlation of inviIgeries is lower than 0.90. A very important
result of our study is that correlation of the addatk is the essential parameter that drives

performances of both HOM and SPLIDHOM.

On practical examples, SPLIDHOM adjustments are paiible with more classical
homogenization techniques applied to monthly oruahrseries, which is a highly desirable
feature. Also, when the individual errors cannotcbasidered “temperature dependant” (Type |

errors in our simulation), SPLIDHOM still removdgetmain biases.

17
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Finally, SPLIDHOM should be compared to new ayireg techniques recently developed, such
as an improved version of HOM, HOMAD (Torett al, 2010) and a quantile matching
technique (Wangt al, submitted). Performances of those methods wilinvestigated further
using various benchmarks and more types of inhomages, during last phase of COST Action

ES0601 “HOME".
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of daily values (e) (resp. f), for correlation r&80.and for 50 computed series.
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Fig. 7. Interquartile range (vertical bars) and rmedshort horizontal bar) of root mean square
error (RMSE) of daily raw (RAW) and adjusted valu@éncent, HOM and SPLIDHOM)
compared to “truth” (a), and boxplots of differeadsetween original unperturbed “true” series
and raw (“RAW”) series or adjusted series (“VinceHHOM” and “SPLIDHOM” methods) on

a variety of annual indices, computed for each:y@anual means (average of the 365 values, b),
summer means (c), annual absolute maximum temper@ty (highest temperature that occurred
during the year), Q95 (resp. Q05) quantile of dhstion of daily values (e) (resp. f), for

correlation r=0.75, 0.80, 0.85, 0.90, 0.95, 0.96700.98, 0.99 and for 50 computed series.
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Fig. 8. Regression estimations for adjustment oPHfetween 1986/06/17 and 1991/11/06, for
Toulouse-Blagnac daily minimum temperature (Y) andumn season (SON), using Toulouse-
Francazal (X) as a reference. Scatter plot of YswrX before the 1991 shift, together with
corresponding cubic spline estimation ofxmer (a), scatter plot of Y versus X after the 1991

shift with corresponding cubic spline estimationmfxja (b), estimation of Rkjart-vxjber (C),
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1 scatter plot of X versus Y, together with cubicisplestimation of ijwer (d). Note that data are
2 split according to the definition of HSPs and positof detected change-points.

3
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Fig. 9. Estimation of the adjustment functionyxgivxipet[Mxvipei(*)] for HSP between
1986/06/17 and 1991/11/08, for Toulouse-Blagnatydainimum temperature (Y) and autumn
season (SON). This function gives the adjustmefetapplied to Y as a function of Y itself (in
°C). Note that this estimation is rounded to a igsien of one tenth of a degree — which is the

precision of data itself in the database.
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Fig. 10. Regression estimations for adjustment 8PHbetween 1972/05/01 and 1986/06/17, for
Toulouse-Blagnac daily minimum temperature (Y) antlmn (SON), using Toulouse-Francazal
(X) as a reference. Scatter plot of Y versus X keethe 1986 shift, together with corresponding
cubic spline estimation of yrper (&), scatter plot of Y versus X after the 1986ftshiith

corresponding cubic spline estimation ofxg: (b), estimation of Rart-vxjper (C), Scatter plot of
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1 Xversus Y, together with cubic spline estimatidmgy;ver (d). Note that data are split according

2 to the definition of HSPs and position of deteatBenge-points.
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Fig. 11. Estimation of the adjustment functionyxi-vxjoef[Mxyjoef(®)] for HSP between
1972/05/01 and 1986/06/17, for Toulouse-Blagnatydainimum temperature (Y) and autumn
season (SON). This function gives the adjustmefet@applied to Y as a function of Y itself (in
°C). Note that this estimation is rounded to a igsien of one tenth of a degree — which is the

precision of data itself in the database.
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Fig. 12. Annual averages of daily adjusted TN seftg compared to annual averages of raw (+)

series and annual averages of monthly homogenergesqsolid).
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