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We consider a change point problem in regression estimation. Observations (Xi, Yi), i =

1, . . . , n are governed by the model Yi = m(Xi) + σ(Xi)εi, where (εi)i∈Z
is independent and

identically distributed, and independent of (Xi)i∈Z
. The latter sequence satisfies a weak depen-

dence condition proposed by Dedecker and Prieur [4]. We essentially study the basic situation

where the regression function has a unique change point. The construction of the jump estimate

process, t→ γ̂(t), is based on local linear regression. Under a positivity condition regarding the

asymmetric kernel involved, we prove the convergence to a compound Poisson process with an

additional drift, of a local dilated-rescaled version of γ̂(t). We also derive asymptotic normality

results.
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1 Introduction

This paper deals with change point problems in regression estimation. Number of authors

in the recent years have studied such problems in a parametric or non parametric setting.

Among the applications we can cite biostatistics, signal processing, econometrics and so on.

In the case of abrupt changes example given for prices, wages, ..., it is of main interest to

test for the existence of change point but also to estimate the location and the size of the

jumps. The setting chosen in this paper is the non parametric one. We refer to the monograph

edited by Müller et al. [13] for references on parametric methods. We consider the following

regression model : Yi = m(Xi) + σ(Xi)εi , i = 1, . . . , n, where (Xi)i∈Z
is a stationary and

weak dependent sequence. (εi)i∈Z
is independent and identically distributed, with mean zero

and variance unity, and is independent of (Xi)i∈Z
. The regression function m(.) is smooth

but for some points where jumps in the function itself or in one of its derivatives occur. We

are interested in estimating the size and the location of the jumps. Such a model has been

studied in the case where the observations (Xi, Yi)’s are independent and identically distributed.
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Several approaches were proposed in this framework. Of course, we do not pretend to give a

complete account of the literature on the topic but rather insist on methods based on differences

between left and right estimates. This approach consists in estimating the right (resp. left)

limit m+(τ) (resp. m−(τ)) using data located at the right (resp. left) of point τ . An estimate

for a possible jump γ(τ) = m+(τ)−m−(τ) follows then. Let us cite for example [14, 12, 18, 10].

Müller [14] uses kernel smoothing with left kernel K+ with support in [−1, 0] and K− defined

by K−(x) = K+(−x). He obtains, for the estimate of a change point, the convergence rate

n−(1+ε) for some ε > 0. Wu and Chu [18] give then improvements, still using kernel smoothing.

Grégoire and Hamrouni [10] appeal to linear local regression. Their essential motivation is that

this method has no edge effects contrarily to the kernel one. The achieved rate of convergence

for the bias is the same near the boundaries as inside the interval. Loader’s paper [12] is based

on the same idea, but in a rather different setting. Loader [12] uses indeed a fixed regular design

and assume the noise to be gaussian with constant variance, while Grégoire and Hamrouni [10]

work with a random design, without any particular assumption on the noise distribution. In

their model, the variance is allowed to depend on the location. In this paper, we follow their

approach. However, in many cases, physical constraints entail that serious modeling cannot

be done only using independent sequences. It justifies our choice to study what happens in a

dependent frame. In our model, the sequence (Xi)i∈Z
is no longer independent. We assume

that this sequence is φ-dependent in the sense of Dedecker and Prieur [4]. Exact definitions

and properties of φ-dependent sequences are recalled in Section 2. This notion of dependence,

contrarily to classical mixing conditions (see for example the monographs by Doukhan [5], Rio

[17] and Bradley [2]), covers many commonly used classes of models (see examples in Section

2.1).

In this paper we essentially focus on the situation where there is a unique change point τ

in the regression function itself. However, the method can be extended to the case of more

than one jump, or to the case where the change point is in a derivative [10]. The case where

the location of τ is known has already been studied in a weak dependence setting by Ango

Nze and Prieur [1]. This case corresponds to some practical situations where, for example, an

experimenter produces himself a change point (beginning of a new treatment, surgical operation,

on so on). The last authors worked with dependent sequences in the sense of Doukhan and

Louhichi [6], and did not give any results concerning the case where the jump location τ is

unknown. Working under φ-dependence, we recover the central limit theorem of Ango Nze

and Prieur [1]. As far as we know, there is no previous results dealing with dependent data

in the case where the jump location is unknown. In this paper, we prove convergence results

for the jump estimate. Denote t → γ̂(t) = m̂+(t) − m̂−(t) our estimated jump process, where

m̂+(t) and m̂−(t) are the estimates of the left and right limits of m(.) at point t, obtained

by linear local regression with positive kernel K+(.) supported on [−1, 0], and K− defined by

K−(x) = K+(−x). Let us assume in this paper (for sake of simplicity) that γ(τ) > 0. In this
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case, we define τ̂ as a point where γ̂(.) is maximum. We assume that K+(0) > 0. It makes the

samples of the process γ̂(t) to be discontinuous, but it allows us to estimate the jump location

τ with rate n−1.

In the case where τ is known, the main tool to obtain the central limit theorem is a Lindeberg

adaptation in a weak dependence frame [15, 1]. To study the location estimate, we need the

deviation process

Zn(z) = α(n, hn)

(
γ̂(τ +

hn

β(n, hn)
z)− γ̂(τ)

)
,

where the bandwidth hn is a sequence of positive real numbers which tends to zero as n tends to

infinity. The location estimate we have chosen τ̂ satisfies τ̂ = arg supZn(z) as z lies in [−M,M ]

for some large enough M . We get in that case that, when the rescaling and dilating parameters

α(n, hn) and β(n, hn) are chosen in a convenient way, Zn(z) converges to a compound Poisson

process with an additional drift, which yields the consistency of τ̂ . We clarify in this paper

that the limiting process is the same as in the independent frame. This is a new result, which

is important as it makes clear that even in the case where the observations are no longer

independent, we can estimate a change point in the regression function. To prove it, we adapt

results of Dedecker and Louhichi [3] on convergence of partial sums of an array with stationary

rows to infinitely divisible distributions. Their conditions are written in terms of conditional

expectations, which can be checked in our setting.

The paper is organized as follows. Section 2 is devoted to the dependence frame. In Section

3, we give the asymptotic results concerning the case where the jump location is known. In

Section 4, we write our main result in the case where the jump location is unknown. We also

give several corollaries concerning asymptotic normality. The proofs of the results of Section

4 are written in Section 5, except for some technical points whose proofs are postponed to

Appendix A.

2 Dependence setting

In our regression model Yi = m(Xi) + σ(Xi)εi, the sequence (εi)i∈Z
is independent and identi-

cally distributed, and independent of (Xi)i∈Z
. The sequence (Xi)i∈Z

is assumed to be weakly

dependent in a sense we precise below.
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2.1 φ-dependence

Let (Ω,A,P) be a probability space. Let X be a real-valued random variable andM a σ-algebra

of A. We then define

φ(M, X) = sup
t∈R

‖FX|M(t)− FX(t)‖∞ .

This coefficient has been first introduced by Dedecker and Prieur [4]. It is a weak version of the

classical φ-mixing coefficient introduced by Ibragimov [11]. It measures the gap between the

conditional distribution function of X given M and the distribution function of X. Its main

advantage is that it is easier to compute. Before going further, let us define the coefficients φ(i)

of a sequence of stationary real-valued random variables. Let us consider (Xi)i∈Z, a stationary

sequence of integrable real valued random variables. For all i ∈ Z, define Mi := σ (Xl, l ≤ i).

The sequence of coefficients φ(i) is then defined by

φ(i) = φ(M0, Xi) .

We say that the sequence (Xi)i∈Z is φ-dependent if φ(n) −−−−→
n→+∞

0.

Examples Many classical models can be proved to be φ-dependent. Let us cite the three

following examples :

• Causal functions of stationary sequences Let (ξi)i∈Z be a stationary sequence of random

variables with values in a measurable space X . Assume that there exists a function H

defined on a subset of X Z, with values in R and such that H(ξ0, ξ−1, ξ−2, . . .) is defined

almost surely. Then (Xn)n∈Z defined for all n in Z by

Xn = H(ξn, ξn−1, ξn−2, . . .)

is called a causal function of (ξi)i∈Z. A particular case is the example of causal linear

processes defined for all n in Z by

Xn =
∑

j≥0

ajξn−j .

• Iterated random functions Let (Xn)n≥0 be a real-valued stationary Markov chain, such

that Xn = F (Xn−1, ξn) for some measurable function F and some i.i.d. sequence (ξi)i>0

independent of X0.

• Dynamical systems on [0, 1] Let I = [0, 1], T be a map from I to I and µ a probability

measure invariant by T . Then (Xn)n≥0 is defined by Xi = T i. Then (Xi)i≥0 is a strictly

stationary sequence of random variables from (I, µ) to I.

For each of these models, explicit bounds for the coefficient φ are computed under appropriate

assumptions in Dedecker and Prieur [4]. In particular we get conditions under which
∑+∞

i=1 φ(i)

is finite.
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2.2 A covariance inequality

In this section, we recall a very usefull covariance inequality.

Proposition 2.1 (Dedecker and Prieur [4]) Let (Ω,A,P) be a probability space. Let X

and Y be two real-valued random variables and h be a σ-BV function. Assume that Y , h(X)

and Y h(X) are integrable. Let M be a σ-algebra of A. If Y is M-measurable, we have the

inequality

|Cov(Y, h(X))| ≤ ‖dh‖ ‖Y ‖1 φ(M, X) .

This proposition allows to get useful bounds to prove the results of Sections 3 and 4.

3 Asymptotic results when the jump location is known

In this section, we are interested in the case where the location τ of the discontinuity is known.

We first precise assumptions on the model and then give asymptotic results for the estimate of

the jump’s size.

3.1 Assumptions on the model

The sequence of observations (Xn, Yn)n∈Z is a stationary sequence of random variables valued

in IR2. We have the following model: Yi = m(Xi) + σ(Xi)εi where the function m(·) is smooth

except in the known point τ , the function σ(·) is continuously differentiable, and the real valued

sequence of random variables (εn)n∈Z
is a centered and normalized independent and identically

distributed sequence. We assume moreover that (Xn)n∈Z and (εn)n∈Z
are mutually independent.

In the following we will make use of the additional assumptions:

1. IE ε0 = 0, IE (ε2
0) = 1, IE |ε0|3 <∞.

2. X0 takes values in [0, 1]. It has a density f strictly positive and continuous.

3. The regression function m(·) = IE(Y0|X0 = ·) is two times continuously differentiable in

each of the intervals [0, τ ] and [τ, 1]. In particular, m and its two first derivatives are left

and right limited at point τ.

4. The conditional variance σ2(·) = Var (Y0|X0 = ·) is continuously differentiable.

5. The change point τ of m(·) lies in ]0, 1[.

3.2 Local linear estimators

The functions m and σ are unknown. We use kernel estimators to estimate these functions.

The definitions below are quite similar to those introduced by Fan and Gijbels [8]. Let K be
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a kernel, and hn = h a window. The real parameters α̂x and β̂x are obtained by solving the

following minimizing problem
∑n

i=1(Yi−αx−βx(x−Xi))
2Ki (x) , with Ki (x) = K

(
x−Xi

h

)
.

Definition 3.1 The local linear estimator of m(·) is

m̂(x) = α̂x =

∑n
i=1 ωi(x)Yi∑n
i=1 ωi(x)

,

with ωi(x) = Ki (x) (S2(x)− (x−Xi)S1(x)), where, for l ∈ IN, Sl(x) =
∑n

i=1(x−Xi)
lKi (x).

3.3 Right and left estimators

To make this article more readable, we make here the following assumption. We consider a

kernel K+ : [−1, 0] → IR+ continuously differentiable. We define then:

K+
l =

∫ 0

−1
xlK+(x)dx, and L+

l =
∫ 0

−1
xlK2

+(x)dx, l ∈ IN,

B+ = (K+
2 )2 −K+

3 K
+
1 , and V+ =

∫ 0

−1
(K+

2 − xK+
1 )2K2

+(x)dx.

We also define K−(x) = K+(−x), and the quantities K−
l , L

−
l , B− and V− relatively to K−. We

have then V+ = V−, B+ = B− and V+ = (K+
2 )2L+

0 + (K+
1 )2L+

2 − 2K+
1 K

+
2 L

+
1 .

Moreover, there is no loss of generality to querry for the normalization K2K0−K2
1 = 1. The

kernels K+ and K− allow then the definition of the local linear estimators m̂+ and m̂− defined

by Definition 3.1.

3.4 Results

We suppose satisfied assumptions of Section 3.1. Let us state the main result of the present

section (Theorem 3.1) and a straightforward corollary (Corollary 3.1).

Theorem 3.1 Assume that the sequence (Xi)i∈Z is φ-dependent with
∑+∞

i=1 φ(i) < +∞. If

nh5 → 0, nh→ +∞ then

√
nh (m̂−(τ)−m−(τ) , m̂+(τ)−m+(τ))

′

converges to the two-dimensional normal law :

N (0, (V+σ
2(τ)/f(τ)) I2)

where I2 is the identity matrix.

Corollary 3.1 Let assume the sequence (Xi)i∈Z to be φ-dependent with
∑+∞

i=1 φ(i) < +∞. If

nh5 → 0, nh→ +∞ then
√
nh (γ̂(τ)− γ(τ))

D−→ N
(
0, 2σ2(τ)

f(τ)
V+

)
.
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The proof of Theorem 3.1 is a variation on Lindeberg-Rio’s techniques [16]. These results

have been proved by Ango Nze and Prieur [1] under the condition that the sequence (Xi)i∈Z

is s-dependent in the sense of Doukhan and Louhichi [6]. This condition is most of the time

weaker than the φ one (see Proposition 2 in Dedecker and Prieur, [4] for comparison of the

coefficients). The proofs are written in [15]. The proofs of Theorem 3.1 and Corollary 3.1

follow essentially the same lines, except for the control of the covariance terms, for which we

use the covariance inequality of Proposition 2.1. They are therefore not detailed in this paper.

Working with the φ-dependence assumption allows us to study the case where the change point

location is unknown, using the covariance inequality of Proposition 2.1. Hence we focus in the

following on the φ-dependence setting.

4 Case where the jump location is unknown

In this section, we follow the approach of Grégoire and Hamrouni [10]. Our result is new as it

is stated for dependent data.

4.1 Introduction

Recall that we define, for all t ∈ [0, 1], γ̂(t) = m̂+(t)− m̂−(t) and that for sake of simplicity, we

assume that γ(τ) > 0. We introduce the following natural estimate of τ

τ̂ = inf{t ∈ κ ; γ̂(t) = sup
x∈κ

γ̂(x)},

where κ is a compact included in ]0, 1[.

To study the asymptotic distributions of τ̂ and γ̂(τ̂ ), we introduce the following rescaled-

dilated version of the process γ̂(t) around τ

Zn(z) = α(n, hn)

(
γ̂(τ +

hn

β(n, hn)
z)− γ̂(τ)

)
, z ∈ [−M,M ].

Eddy [7], to estimate the mode of a distribution, is one of the firsts to have used such arguments.

If M is large enough, we have τ̂ = τ+ hn

β(n,hn)
ẑ, where ẑ = arg supz∈[−M,M ]Zn(z). Then, choosing

properly α(n, hn) and β(n, hn), we prove that Zn(z) converges to a process Z. So zmax(n) =

arg supz Zn(z) converges to zmax = arg supz Z(z). We also deduce from these convergences

informations on the rate of convergence of τ̂ = τ + hn

β(n,hn)
zmax(n).

4.2 Assumptions

• H1. limn→∞ hn = 0 and limn→∞ nhn = ∞.

• H2. limn→∞
hn

β(n,hn)
= 0, limn→∞ α(n, hn) = ∞ and limn→∞ β(n, hn) = ∞.
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• H3.

– 0. K+(0) > 0.

– 00. K+(−1) = 0.

– 1. 0 < limn→∞
α(n,hn)
β(n,hn)

= L4 <∞.

– 2. limn→∞
α(n,hn)

nhn
= L5 <∞.

If H3 is satisfied, we define

lim
n→∞

α2(n, hn)

nhnβ(n, hn)
= L4 × L5 = L6 <∞ .

Assumption H3.00 is unnecessary, but it is set for sake of simplicity in the calculations.

4.3 Notations

We use the following notations :

• λ1 = L5 M+(0),

• if L5 > 0, λ2 = L6

L2
5

fX(τ),

• λ3 = L4M+(0)fX(τ) = λ1λ2.

Let y := z
β(n,hn)

. Let M±(x) := (K±
2 − xK±

1 )K±(x). We define for any z,

• ϕ±n,z(t) := α(n,hn)
nhn

(
M±

(
τ−t
hn

+ y
)
−M±

(
τ−t
hn

))
(m(t)−m±(τ)),

• ϕn,z(t) := ϕ+
n,z(t)− ϕ−n,z(t),

• ϕ̃n,z(t) := ϕn,z(t)− E (ϕn,z(X1)),

• ψ±n,z(t) := α(n,hn)
nhn

(
M±

(
τ−t
hn

+ y
)
−M±

(
τ−t
hn

))
σ(t),

• ψn,z(t) := ψ+
n,z(t)− ψ−n,z(t), and

• for any i in N, Ũi,n,z := |ϕ̃n,z(Xi)|+ |ψn,z(Xi)|.

8



4.4 Main result

We can now write the key result of this paper.

Theorem 4.1 Assume that H1, H2 and H3 are satisfied. Assume that (Xi)i∈Z is φ-dependent

with
∑+∞

i=1 φi < +∞. We assume moreover that for any fixed z1, z2, for any fixed k ∈ N
∗,

nCov
(
Ũ0,n,z1

, Ũk,n,z2

)
−−−−→
n→+∞

0 . (1)

Then we have

Zn ⇒ Z , on D ([−M,M ]) (2)

where

Z(z) =
λ3

fX(τ)
γ(τ)|z| + λ1

fX(τ)
N (z) , (3)

with N (z) defined by

N (z) =

{ ∑
i=1N

+
z (−γ(τ)− 2σ(τ)ε+

i ) if z ≥ 0 ,∑
i=1N

−
−z(−γ(τ) + 2σ(τ)ε−i ) if z < 0 .

(4)

The sequences (ε+
i ) and (ε−i ) are independent and built with i.i.d. variables distributed as the

model error variable ε. N+
z and N−

z are independent homogeneous Poisson processes with λ2

as parameter, and are independent of the sequences (ε+
i ) and (ε−i ).

Remark 1 The limit process Z is a bilateral compound Poisson process with an additional

drift. Under the alternative assumption γ(τ) < 0, we would have changed the sign before

2σ(τ)ε±i in both cases z ≥ 0 and z < 0. Note that the limit process Z is the same as in the

independent case. We prove indeed, using mainly covariance inequality of Proposition 2.1 and

the φ-dependence property of the sequence (Xi)i∈Z
, that the covariance terms do not affect the

limit.

Remark 2 Theorem 4.1 applies to the models of Section 2.3, as soon as condition (1) is

satisfied. Let us precise what happens for two classes of examples.

Claim 1

Assume that there exists joint densities for the couples (X0, Xk), fk(x, y), uniformly bounded

with respect to k :

sup
k≥1

sup
x, y

|fk(x, y)| <∞ . (5)

Then assumption (1) is satisfied.

Proof of Claim 1

We have in that case

nCov
(
Ũi,n,z1

, Ũ0,n,z2

)
= O

(
n

(
α(n, hn)

nhn

)2(
hn

β(n, hn)

)2
)

= O
(

1

n

)
,
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which tends to 0 as n tends to infinity. �

Claim 2

Let (T, µ) be a dynamical on [0, 1]. Let X0 follow the invariant law µ and for any k in N
∗ define

Xk = T kX0. Assume that µ is absolutely continuous with respect to Lebesgue. For the sequence

(Xi)i∈N assumption (1) is satisfied.

Proof of Claim 2

We have in that case

nCov
(
Ũi,n,z1

, Ũ0,n,z2

)
= O

(
n

(
α(n, hn)

nhn

)2(
1

β(n, hn)

)2
1

hn

)
= O

(
1

nhn

)
,

which tends to 0 as n tends to infinity. �

Let us give now straightforward corollaries of Theorem 4.1.

Corollary 4.1 Assume that H1, H2, H3,0 and H3,00 are satisfied. Assume that (Xi)i∈Z is φ-

dependent with
∑+∞

i=1 φ(i) < +∞, and that assumption (1) is satisfied. Then

β(n, hn)

hn
(τ̂ − τ)

D−→ T ,

where T is a R-valued variable defined as

T = argsupz

{
− λ3

fX(τ)
γ(τ)|z| + λ1

fX(τ)
N (z)

}
.

Corollary 4.1 is deduced from Theorem 4.1. The proof is the same as in the independent

case and is written in Section 3 of Grégoire and Hamrouni [10]. If we take β(n, hn) = nhn in

Corollary 4.1, we reach the rate n−1 as far as the sequence of bandwiths hn satisfies nhn → +∞.

We derive now asymptotic normality for τ̂ and γ(τ̂ ).

Corollary 4.2 Assume that H1 is satisfied and that nh5
n → 0. Assume that H3,0 and H3,00 are

satisfied. Assume that (Xi)i∈Z is φ-dependent with
∑+∞

i=1 φ(i) < +∞, and that assumption (1)

is satisfied. Then
√
nhn(γ̂(τ̂ )− γ(τ))

D−→ N
(

0,
2σ2(τ)

fX(τ)
V 2

+

)
.

The proof can be easily deduced from Corollary 3.1 and Theorem 4.1.
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Corollary 4.3 Let f̂X(.) and σ2(.) be consistent estimators of f(.) and σ2(.) such as

supt∈(0,1) |f̂X(t)− fX(t)| = oP (1) and supt∈(0,1) |σ̂2(t)− σ2(t)| = oP (1).

The estimator f̂X(.) is supposed to be nonnegative. Under the assumptions of Corollary 4.2,

we have

√
nhn

√
f̂X(τ̂ )(γ̂(τ̂)− γ(τ))

(2σ̂2τ̂))1/2

D−→ N (0, V+) .

We refer to Grégoire and Hamrouni [10] for the choice of convenient estimators.

4.5 Key argument in the proof

We define M±
n (z) by

M±
n (z) =

n∑

i=1

(
ϕ±n (Xi) + ψ±n (Xi)εi

)
.

To prove Theorem 4.1, we prove the same result on Mn(z) := M+
n (z) − M−

n (z) which is

asymptotically equivalent to Zn(z).

Theorem 4.2 Assume that the sequence (Xi)i∈Z is φ-dependent with
∑+∞

i=1 φ(i) < +∞. Then,

under H1 and H3,

Zn(z) = 1+oP (1)
f(τ)

(M+
n (z)−M−

n (z)) + oP (1)

= 1+oP (1)
f(τ)

Mn(z) + oP (1) .

The proof of Theorem 4.2, which is rather technical and lengthy, is postponed to Appendix A.

The proof of the convergence of Mn(z) relies on the fact that we can write Mn(z) as the sum

of the terms of a row in a triangular array. The proof is written in Section 5 below.

5 Proof of Theorem 4.1

In order to prove Theorem 4.1, we proceed in two steps. First we prove the 2-dimensional

convergence of the process Mn(z), then we prove that the process (Mn(z), z ∈ [−M,M ]) is

tight in D ([−M,M ]).

5.1 2-dimensional convergence

To prove the 2-dimensional convergence, according to Cramer-Wold device, we need to show

that for any (a, b) and for any pair (z1, z2) ∈ [−M,M ]× (−M,M ], aMn(z1) + bMn(z2) has an

asymptotic distribution. Define ϕn(t) := aϕn,z1
(t)+bϕn,z2

(t). ϕ̃n and ψn(t) are defined similarly.

Using the notations of Section 4.3, define Ti,n := ϕn(Xi)+ψn(Xi)εi and Ũi,n := aŨi,n,z1
+bŨi,n,z2

.

We can write aMn(z1)+ bMn(z2) =
∑n

i=1 Ti,n . Hence, we have to prove the convergence of the
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cumulative sum of the terms of the same row of a triangular array,
∑n

i=1 Ti,n. In the independent

case, the proof of Grégoire and Hamrouni [10] relies on the classic result of convergence of

Gnedenko and Kolmogorov [9] to infinitely divisible distributions. Here we can not apply this

result. However, Dedecker and Louhichi [3] have extended this result under a condition which

can be expressed in terms of conditional expectations. In the following, we prove that we can

apply their result. Define T̃k,n := Tk,n − ETk,n = ϕ̃n(Xk) + ψn(Xk)εk. For any k ∈ N, define

Mk := σ(Xj, j ≤ k). Define Sn(t) := T̃1,n + · · · + T̃[nt],n, for any t ∈ [0, 1]. We are interested

in the convergence in distribution of Sn(1). Let H be the space of continuous real functions ϕ

such that x→ |(1 + x2)−1ϕ(x)| is bounded. If F is any distribution function, define also µ1
F as

the probability measure with characteristic function

φF (z) = exp

(∫
(eizx − 1− izx)

1

x2
dF (x)

)
(6)

and µt
F := µ1

tF . In order to prove the convergence in distribution of Sn(1), we will prove the

stronger result S1, that is we will prove that there exists some distribution function Γ such that

for any ϕ in H, any t in [0, 1] and any positive integer k,

S1(ϕ) lim
n→+∞

‖E
(
ϕ(Sn(t))− µt

Γ(ϕ)|Mk

)
‖1 = 0 .

The main tool of the proof is Corollary 3 of Dedecker and Louhichi [3] recalled further. Let us

first introduce some notations.

Definition 5.1 For any positive integer N , define

R1(N, T ) = lim
t→0

lim sup
n→+∞

sup
N≤m≤[nt]

n‖T̃0,n

m∑

k=N

E(T̃k,n|M0)‖1 ,

and N1(T ) = inf{N > 0 : R1(N) = 0} (N1(T ) may be infinite). We say that (T̃i,n) satisfies

the weak-dependence condition WD if

lim
t→0

lim sup
n→+∞

1

t
‖E(Sn(t)|M0)‖1 = 0 (7)

and R1(N, T ) tends to zero as N tends to infinity.

WD is a weak dependence condition. In addition to it, we need to control some residual terms.

Condition (8) is a kind of equiintegrability condition.

Definition 5.2 For any (k, n) in (N × Z), define Sk,n by Sk,n = 0 if k ≤ 0 and Sk,n =

T̃1,n + · · ·+ T̃k,n otherwise. For any positive integer N define

R2(N, T ) = lim sup
t→0

lim sup
n→+∞

1

t
E




[nt]∑

k=1

(T̃ 2
k,n + 2|T̃k,n(Sk−1,n − Sk−N,n)|)(1 ∧ |Sk−N |)


 , (8)

and N2(T ) = inf{N > 0 : R2(N) = 0} (N2(T ) may be infinite). We say that the array (T̃i,n)

is EQ if nE(T̃ 2
0,n) is bounded and if R2(N, T ) tends to zero as N tends to infinity.
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We define N0(T ) := N1(T ) ∨ N2(T ). We can now give the following result which is a weak

version of [3, Corollary 3, page 7].

Corollary 5.1 Assume that (T̃i,n) is WD and EQ with N0(T ) = 1. Assume moreover that

ET̃ 2
0,n −−−−→

n→+∞
0. Then S1 holds for a distribution function Γ if and only if : for any continuity

point x (including +∞) of the function x→ Γ(x),

lim
t→0

lim sup
n→+∞

∥∥∥∥∥∥
E


1

t

[nt]∑

k=1

T̃ 2
k,n1IT̃k,n≤x − Γ(x)|M0



∥∥∥∥∥∥

1

= 0 . (9)

In [3, Corollary 3], you can consider a random distribution function instead of Γ. We refer

to their paper for further details. In order to apply Corollary 5.1, we have to prove that the

assumptions are satisfied. In the following, C is some constant which may vary from line to

line. Moreover, recall that for hn, α(n, hn) and β(n, hn) we assume H1 to H3.

Proof of N1(T ) = 1 : We want to prove

lim
t→0

lim sup
n→+∞

sup
1≤m≤[nt]

n

∥∥∥∥∥T̃0,n

m∑

k=1

E(T̃k,n|M0)

∥∥∥∥∥
1

= 0 . (10)

On one hand, using the φ-dependence property of (Xn)n∈Z, we get

nE

∣∣∣T̃0,nE(T̃k,n|M0)
∣∣∣ ≤ n ‖E(ϕ̃n(Xk)|M0)‖∞ E|T̃0,n|

= O
(
n

(
α(n, hn)

nhn

)2
hn

β(n, hn)
φ(k)

)
≤ C φ(k) , (11)

for some constant C. We have indeed ‖dϕ̃n‖ = O
(

α(n,hn)
nhn

)
.

On the other hand we have, for any fixed k in N
∗,

nE

∣∣∣T̃0,nE(T̃k,n|M0)
∣∣∣ ≤ nE

(
Ũ0,nŨk,n

)
= nCov

(
Ũ0,n, Ũk,n

)
+ n

(
EŨ0,n

)2

, (12)

as the sequence (Xi)i∈Z is stationary. Now as EŨ0,n = O
(

hn

β(n,hn)

)
, using assumption (1), we

get that the right hand term in (12) tends to 0 as n tends to infinity.

Hence, as
∑

k≥1 φk < +∞, the dominated convergence theorem yields for any t

sup
1≤m≤[nt]

n

∥∥∥∥∥T̃0,n

m∑

k=1

E(T̃k,n|M0)

∥∥∥∥∥
1

−−−−→
n→+∞

0 .

This yields (10). Hence N1(T ) = 1.
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Proof of “(T̃i,n) is WD” : We have to prove (7) and

lim
N→+∞

lim
t→0

lim sup
n→+∞

sup
N≤m≤[nt]

n

∥∥∥∥∥T̃0,n

m∑

k=N

E(T̃k,n|M0)

∥∥∥∥∥
1

= 0 . (13)

The proof of (13) is a straightforward consequence of (10).

Let us study (7). Using the dependence properties of the sequences (Xi)i∈Z and (εi)i∈Z, we

get

E(Sn(t)|M0) =

[nt]∑

k=1

E(ϕ̃n(Xk)|M0) . (14)

On one hand, we have

‖E(ϕ̃n(Xk)|M0)‖1 ≤ (‖dϕn‖)φk = O
(
α(n, hn)

nhn

φk

)
. (15)

On the other hand we have

‖E(ϕ̃n(Xk)|M0)‖1 ≤ 2E |ϕn(Xk)| = O
(
α(n, hn)

nhn

hn

β(n, hn)

)
. (16)

Hence, using the dominated convergence theorem, we deduce from (14), (15) and (16) that for

any fixed t > 0

lim sup
n→+∞

1

t
‖E(Sn(t)|M0)‖1 = 0 ,

and consequently

lim
t→0

lim sup
n→+∞

1

t
‖E(Sn(t)|M0)‖1 = 0 .

Hence the sequence (T̃i,n) is WD.

Proof of “(T̃i,n) is EQ” and N2(T ) = 1 : We use here [3, Definition 3, page 9]. Hence, we are

going to prove that (T̃i,n) is 1-EQ. For this, we have to prove the two following points :

lim sup
n→+∞

nE(T̃ 2
0,n) ≤ C (17)

for some positive constant C.

lim
t→0

lim sup
n→+∞

1

t
E




[nt]∑

k=1

T̃ 2
k,n (1 ∧ Sk−1,n)


 = 0 , (18)

where Sk−1,n := max (|S1,n|, . . . , |Sk−1,n|). Let us first study (17). For any real u (including

infinity), define Γn(u) := nE

(
T̃ 2

0,n1IT̃0,n≤u

)
. We have then nE(T̃ 2

0,n) = Γn(+∞). The study of

this term does not depend on the dependence property of the sequence (Xi)i∈Z. Hence, we
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know from Grégoire and Hamrouni [10] that Γn(+∞) converges, as n tends to infinity, to a

finite limit Γ(+∞) which depends on a, b, and on the relative positions of z1, z2 and 0. It

concludes the proof of (17).

It remains to prove (18). Using the stationarity and dependence properties of (Xi)i∈Z and

(εi)i∈Z, we have

E

(
T̃ 2

k,n (1 ∧ Sk−1,n)
)
≤

k−1∑

i=1

E

(
T̃ 2

k,n |T̃i,n|
)

=

k−1∑

i=1

E

(
T̃ 2

i,n |T̃0,n|
)
.

Let us bound E

(
T̃ 2

i,n |T̃0,n|
)
. There exists some constant C such that for any i in N

∗,

E

(
T̃ 2

i,n |T̃0,n|
)
≤ C

α(n, hn)

nhn

(
Cov

(
Ũi,n, Ũ0,n

)
+
(

EŨ0,n

)2
)
. (19)

Hence, as α(n, hn)/(nhn) tends to L5 < +∞ as n tends to infinity, there exists some constant

C such that

1

t
E




[nt]∑

k=1

T̃ 2
k,n (1 ∧ Sk−1)


 ≤ C

t

[nt]∑

k=1

k−1∑

i=1

(
Cov

(
Ũi,n, Ũ0,n

)
+
(

EŨ0,n

)2
)
. (20)

Study of 1
t

∑[nt]
k=1

∑k−1
i=1 Cov

(
Ũi,n, Ũ0,n

)
.

We first notice that

1

t

[nt]∑

k=1

k−1∑

i=1

Cov
(
Ũi,n, Ũ0,n

)
≤ n

∑

i≥1

Cov
(
Ũi,n, Ũ0,n

)
. (21)

Now, using the dependence property of (Xi)i∈Z, there exists a constant C such that

nCov
(
Ũi,n, Ũ0,n

)
≤ C n

(
α(n, hn)

nhn

)2
hn

β(n, hn)
φi . (22)

Assumption (1) yields that for each i, nCov
(
Ũi,n, Ũ0,n

)
tends to 0 as n tends to infinity. Hence,

as
∑

i≥1 φi < +∞, the dominated convergence theorem yields : 1
t

∑[nt]
k=1

∑k−1
i=1 Cov

(
Ũi,n, Ũ0,n

)

tends to 0 as n tends to infinity.

Study of 1
t

∑[nt]
k=1

∑k−1
i=1

(
EŨ0,n

)2

.

We have EŨ0,n = O
(

hn

β(n,hn)

)
. Hence there exists some constant C such that

k−1∑

i=1

(
EŨ0,n

)2

≤ C k

(
hn

β(n, hn)

)2

. (23)
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Hence for any fixed t > 0,

1

t

[nt]∑

k=1

k−1∑

i=1

(
EŨ0,n

)2

≤ 1

t

[nt] (1 + [nt])

2
O
(

1

n2

)
= t O (1) .

Then, as t→ 0, we deduce (18). It concludes the proof of (T̃i,n) is 1-EQ.

Hence we have proved that the assumptions of Corollary 5.1 are satisfied. Recall that

Γn(u) = nE

(
T̃ 2

0,n1IT̃0,n≤u

)
. We know from Grégoire and Hamrouni [10] that Γn(u) tends to a

limit Γ(u) where Γ is a distribution function. In fact, using their proof, we get the following

stronger result :

E

∣∣∣nT̃ 2
0,n1IT̃0,n≤u − Γ(u)

∣∣∣ −−−−→
n→+∞

0 . (24)

Moreover, ∥∥∥∥∥∥
E


1

t

[nt]∑

k=1

T̃ 2
k,n1IT̃k,n≤x − Γ(x)|M0



∥∥∥∥∥∥

1

is bounded by

[nt]∑

k=1

∥∥∥∥
1

nt
E

(
nT̃ 2

k,n1IT̃k,n≤x − Γ(x) |M0

)∥∥∥∥
1

+
[nt]

nt
Γ(x)

(
nt

[nt]
− 1

)
. (25)

Let t be fixed. The second term in (25) tends to 0 as n tends to infinity. Let us now study the

first term. Using (24) and the stationarity of (Xi)i∈Z
, we have that

[nt]∑

k=1

∥∥∥∥
1

nt
E

(
nT̃ 2

k,n1IT̃k,n≤x − Γ(x) |M0

)∥∥∥∥
1

≤ [nt]

nt
E

∣∣∣nT̃ 2
0,n1IT̃0,n≤x − Γ(x)

∣∣∣ , (26)

which tends to zero as n tends to infinity. Hence, we get that

lim
t→0

lim sup
n→+∞

∥∥∥∥∥∥
E


1

t

[nt]∑

k=1

T̃ 2
k,n1IT̃k,n≤x − Γ(x)|M0



∥∥∥∥∥∥

1

= 0 .

Therefore we get S1 which implies the convergence in distribution of Sn(1). It concludes the

proof of the 2-dimensional convergence. Now, to derive the limit process M, we proceed as in

Section 5 of Grégoire and Hamrouni [10], starting from Kolmogorov’s formula (6). We get then

the 2-dimensional convergence of the process Mn to the bilateral compound Poisson process

M defined as

M(z) = −λ3γ(τ)|z| + λ1N (z)

with N (z) defined by (4).

16



5.2 Tightness

Let us state the tightness result. Using [3, Remark 5 and Proposition 2, page 9], we get the

tightness, as (T̃i,n) is WD and 1-EQ. Now, from the 2-convergence and from the tightness, we

deduce the weak convergence of the process (Mn).

Concluding remarks
In this paper, we studied a change point problem for dependent data. The interest of study-

ing what happens for dependent data is obvious, as many commonly used models are not

independent. In this paper, our model was the following regression model :

Yi = m(Xi) + σ(Xi)εi ,

where (εi)i∈Z
is independent and identically distributed, and independent of (Xi)i∈Z

, which is

assumed to be φ-dependent. This notion of dependence covers many interesting models. Using

local linear smoothing, we clarify in this paper that the limiting process of a local dilated-

rescaled version of the jump estimate process is the same as for independent data.

6 Appendix A : Proof of Theorem 4.2

We first prove the two following lemmas.

Lemma 6.1 Assume that the sequence (Xi)i∈Z is φ-dependent with
∑+∞

i=1 φ(i) < +∞.

(i) Under H1 and H2, if we define S+
l (x) by

∑n
i=1(x−Xi)

lK+
i (x), then

S+
l (τ + hny) = nhl+1

n f(τ)
(
K+

l + oP (1)
)
.

(ii) Under H1, H2, and H3,

S+
l (τ + hny)− S+

l (τ) = O
(

nhl+1
n

β(n, hn)

)
+OP

(√
nh2l+1

n

β(n, hn)

)
.

(iii) Let m+(τ) := limt→τ, t>τ m(t). Under H1,

D+
l (τ) :=

n∑

i=1

(τ −Xi)
lK+

(
τ −Xi

hn

)
(Yi −m+(τ)) = O

(
nhl+2

n

)
+OP

(√
nh2l+1

n

)
.

Lemma 6.2 Assume that the sequence (Xi)i∈Z is φ-dependent with
∑+∞

i=1 φ(i) < +∞.
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(i) Under H1 and H2,
n∑

i=1

w+
i (τ + hny) = n2h4

nf
2(τ)(1 + oP (1)).

(ii) Under H1, H2 and H3,

1) ∑n
i=1 w

+
i (τ + hny)− w+

i (τ)∑n
i=1 w

+
i (τ + hny)

= OP

(
1

β(n, hn)
+

1√
nhnβ(n, hn)

)
,

2)

α(n, hn)
∑n

i=1(w+

i (τ+hny)−w+

i (τ))(Yi−m+(τ))∑n
i=1

w+

i (τ+hny)
= 1+oP (1)

f(τ)
M+

n (z)

+OP

([
α(n,hn)
βn(n,hn)

+ α(n,hn)√
nhnβ(n,hn)

] [
hn + 1√

nhn

])
.

(iii) Under H1, ∑n
i=1(w

+
i (τ)(Yi −m+(τ))∑n

i=1 w
+
i (τ)

= OP

(
h2

n +
1√
nhn

)
.

Let us write now the proofs of Lemmas 6.1 and 6.2.

Proof of Lemma 6.1

(i) The proof is a rather straightforward modification of the one of Theorem 2.1 in Ango Nze

and Prieur [1] (see also [15]).

(ii) Thanks to Bienaymé-Tchebycheff inequality, we write:

S+
l (τ+hny)−S+

l (τ) = IE
(
S+

l (τ + hny)− S+
l (τ)

)
+OP

(√
Var

(
S+

l (τ + hny)− S+
l (τ)

))
. (27)

For sake of simplicity, let assume that y ≥ 0. The proof for y < 0 is then similar.

We have:

IE
(
S+

l (τ + hny)− S+
l (τ)

)
= nhl+1

n

∫ (
(x+ y)lK+(x + y)− xlK+(x)

)
f(τ − hnx)dx

= nhl+1
n

∫ −1

−1−y

(x + y)lK+(x+ y)f(τ − hnx)dx

+nhl+1
n

∫ −y

−1

(
(x+ y)lK+(x + y)− xlK+(x)

)
f(τ − hnx)dx

−nhl+1
n

∫ 0

−y

xlK+(x)f(τ − hnx)dx. (28)
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Under assumptions H1 and H2, nhn −−−→
n→∞

∞ and hn

β(n,hn)
−−−→
n→∞

0 , then

∫ −1

−1−y
(x + y)lK+(x+ y)f(τ − hnx)dx =

∫ y

0
(x− 1)lK+(x− 1)f(τ − hn(x− 1− y))dx

=
∫ y

0

(
(−1)lK+(−1) +O(x)

)
(f(τ) + o(1)) dx

= O(y2) = O
(

1
β(n,hn)2

)
.

Similarly, ∫ 0

−y
xlK+(x)f(τ − hnx)dx = O

(
1

β(n,hn)

)
,

and ∫ −y

−1

(
(x+ y)lK+(x + y)− xlK+(x)

)
f(τ − hnx)dx = O(y) = O

(
1

β(n,hn)

)
.

Hence,

IE
(
S+

l (τ + hny)− S+
l (τ)

)
= O

(
nhl+1

n

β(n, hn)

)
.

We also have:

Var
(
S+

l (τ + hny)− S+
l (τ)

)
= nVar

(
(τ + hny −X1)

lK+
1 (τ + hny)− (τ −X1)

lK+
1 (τ)

)

+ 2

n∑

k=2

(n− k + 1)Cov (Ψk(τ + hny)− Ψk(τ),Ψ1(τ + hny)−Ψ1(τ)) , (29)

where Ψi(t) = (t−Xi)
lK+

(
t−Xi

hn

)
.

Define Ck,1 by

Cov (Ψk(τ + hny)−Ψk(τ),Ψ1(τ + hny)− Ψ1(τ)) .

Using same kind of decomposition as (28), we get

nVar
(
(τ + hny −X1)

lK+
1 (τ + hny)− (τ −X1)

lK+
1 (τ)

)
= O

(
nh2l+1

n

β(n, hn)

)
.

Now, using the dependence properties of the sequence (Xi)i∈Z, we get the following upper

bound for the covariance terms :

n∑

k=2

(n− k + 1)Ck,1 = O
(
nh2l+1

n

β(n, hn)

∑

i≥1

φi

)
.

Therefore, as
∑

i≥1 φi < +∞,

Var
(
S+

l (τ + hny)− S+
l (τ)

)
= O

(
nh2l+1 β−1(n, hn)

)
.
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We then conclude by using equality (27).

(iii) Using once more Bienaymé-Tchebycheff’s inequality, we have

D+
l (τ) = ED+

l (τ) +OP

(√
Var D+

l (τ)

)
. (30)

We have
ED+

l (τ) = nhl+1
n

∫
xlK+(x)(m(τ − hnx)−m+(τ))f(τ − hnx)dx

= O
(
nhl+2

n

)
.

Let pl
n(Xi) := (τ −Xi)

lK+

(
τ−Xi

hn

)
(m(Xi)−m+(τ)).

Using the stationarity and the independence properties of the sequences (εi)i∈Z and (Xi)i∈Z,

we write

Var D+
l (τ) = nVar

(
(τ −X1)

lK+

(
τ −X1

hn

)
(Y1 −m+(τ))

)

+ 2
n∑

k=2

(n− k + 1)Cov
(
pl

n(X1), p
l
n(Xk)

)
. (31)

Then

nVar

(
(τ −X1)

lK+

(
τ −X1

hn

)
(Y1 −m+(τ))

)

≤ nh2l+1
n

∫
x2lK2

+(x)
(
(m(τ − hnx)−m+(τ))2 + σ2(τ − xhn)

)
f(τ − hnx)dx = O

(
nh2l+1

n

)
.

(32)

Using the dependence property of the sequence (Xi)i∈Z, we get

∣∣∣∣∣2
n∑

k=2

(n− k + 1)Cov
(
pl

n(X1), p
l
n(Xk)

)
∣∣∣∣∣ ≤ 2h2l+3

n

n−1∑

k=1

(n− k)φk = O
(
nh2l+3

n

+∞∑

k=1

φk

)
. (33)

Recall that
∑+∞

k=1 φk < +∞. Hence, using (32) and (33), we get Var D+
l (τ) = O

(
nh2l+1

n

)
.

Together with (30) and (31) it yields (iii). 2

Proof of Lemma 6.2

(i) It is a straightforward consequence of the decomposition

n∑

i=1

w+
i (τ + hny) = S+

2 (τ + hny)S
+
0 (τ + hny)−

(
S+

1 (τ + hny)
)2

and of point (i) of Lemma 6.1.
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(ii) 1) Proceeding as in the paper of Grégoire and Hamrouni [10], we can write

n∑

i=1

(ω+
i (τ + hny)− ω+

i (τ)) =
(
S+

2 (τ + hny)− S+
2 (τ)

)
S+

0 (τ) +
(
S+

1 (τ + hny)− S+
1 (τ)

)2

+
(
S+

0 (τ + hny)− S+
0 (τ)

)
S+

2 (τ + hny)

−2
(
S+

1 (τ + hny)− S+
1 (τ)

)
S+

1 (τ + hny)

. (34)

Then, using point (ii) of Lemma 6.1 and point (i) of Lemma 6.2, we get (ii) 1) of Lemma 6.2.

(ii) 2) We proceed as in the paper of Grégoire and Hamrouni [10] (proof of point c of their

Lemma 5.2).

(iii) The proof follows from Theorem 2.2 in Ango Nze and Prieur [1] and from the follow-

ing decomposition

m̂±(τ) =

∑n
i=1 w

±
i (τ)Yi∑n

i=1 w
±
i (τ)

.

2

The result of Theorem 4.2 is deduced from Lemma 6.1 and 6.2 above, as in Grégoire and

Hamrouni [10].
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