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Coupling for τ -Dependent Sequences and
Applications

J. Dedecker1,2 and C. Prieur3

Received April 17, 2003; revised April 26, 2004

Let X be a real-valued random variable and M a σ -algebra. We show that
the minimum L1-distance between X and a random variable distributed as X
and independant of M can be viewed as a dependence coefficient τ(M,X)

whose definition is comparable (but different) to that of the usual β-mix-
ing coefficient between M and σ(X). We compare this new coefficient to
other well known measures of dependence, and we show that it can be eas-
ily computed in various situations, such as causal Bernoulli shifts or sta-
ble Markov chains defined via iterative random maps. Next, we use coupling
techniques to obtain Bennett and Rosenthal-type inequalities for partial sums
of τ -dependent sequences. The former is used to prove a strong invariance
principle for partial sums.

KEY WORDS: Coupling; dependent sequences; Bernoulli shifts; Markov
chains; exponential inequalities; strong invariance principle; law of the iter-
ated logarithm.

1. INTRODUCTION

To define the dependence coefficient τ between a real-valued random var-
iable X and a σ -algebra M, we need the following classical result about
conditional probability (see for instance Theorem 33.3, Billingsley(4)).
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Lemma 1. Let (�,A,P) be a probability space, M a σ -algebra of
A and X a real-valued random variable with distribution PX. There exists
a function PX|M from B (R)×� to [0,1] such that

1. For any ω in �, PX|M(.,ω) is a probability measure on B(R).
2. For any A in B(R),PX|M(A, .) is a version of E(IX∈A|M).

The function PX|M is a conditional distribution of X given M. We denote
by PX|M(A) the random variable PX|M(A, .).

According to Proposition (3.22) (III) in Bradley(7) the function

V (PX|M)= sup
{∣∣ ∫ f (x)PX|M(dx)−

∫
f (x)PX(dx)

∣∣, f s.t.‖f ‖∞ �1
}
(1.1)

is a M-measurable random variable and the usual β-mixing coefficient
between M and σ(X) may be defined as

β(M, σ (X))= 1
2‖V (PX|M)‖1. (1.2)

One of the most important properties of β is the coupling property proved
by Goldstein(19) and Berbee(2): if � is rich enough, there is a random var-
iable X∗ independent of M and distributed as X such that P(X �=X∗)=
β(M, σ (X)).

Unfortunately, many simple Markov chains are not β-mixing (which
means that β(σ(X0), σ (Xn)) does not tend to zero as n tends to infinity).
For instance, let Xn be the stationary solution of

Xn=f (Xn−1)+ εn, (1.3)

where f is k-lipschitz with k < 1 and the innovations are i.i.d. and integra-
ble. It is well known that the chain is geometrically β-mixing if the distri-
bution of εi has an absolutely continuous component which is bounded
away from zero in a neighborhood of the origin. However if we omit
the assumption on the innovations, this may be no longer true (see for
instance the counter-example of Andrews(1)).

In this paper we introduce a new dependence coefficient wich is easier
to compute than β. The definition is similar to that of β except that the
supremum in (1.1) is taken over the class �1(R) of 1-Lipschitz functions
from R to R. If the real-valued random variable X is integrable, we shall
see in Lemma 2 that the function

W(PX|M)= sup
{∣∣ ∫ f (x)PX|M(dx)−

∫
f (x)PX(dx)

∣∣, f ∈�1(R)

}
(1.4)
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is a M-measurable random variable. The coefficient τ is now defined by

τ(M,X)=‖W(PX|M)‖1. (1.5)

As for β, this definition does not depend on the choice of the condi-
tional distribution. For the model described in (1.3) we obtain the bound
τ(σ (X0),Xn)�Ckn without any additional assumption on the distribution
of the innovations (the constant C is smaller than 2‖X0‖1).

The main result of Section 2 is the following coupling lemma: if �
is rich enough. the coefficient τ(M,X) is the infimum of ‖X−Y‖1, where
Y is independent of M and distributed as X, and this infimum is reached
for some particular random variable X∗ introduced by Major(24). We also
give a less precise result when the random variable X takes its values
in a Banach space E. In Section 3 we compare τ to the strong mix-
ing coefficient of Rosenblatt(33) and to the s-dependence coefficient intro-
duced in Coulon-Prieur and Doukhan(10). To conclude this section we give
three large classes of examples for which the coefficient τ can be easily
computed. In Section 4 we establish some deviation inequalities for the
maximum of partial sums. Theorem 1 (resp. Corollary 1) extends Ben-
nett’s inequality (resp. Rosenthal’s inequality) to τ -dependent sequences.
Using the comparison between τ and α, we obtain the same bounds as
those given in Rio(32) for strongly mixing sequences. These inequalities are
the main tools to prove a strong invariance principle for partial sums of
τ -dependent sequences (Section 6).

We conclude this introduction with some bibliographic notes. For
strongly mixing sequences, the result of Major(24) has been used by Rio(31)

and Peligrad(29) to obtain a coupling result in L1. This is the approach
we follow in this paper. As already mentioned, another approach for the
coupling of dependent variable is that of Goldstein(19) and Berbee(2). It
has been adapted by Bryc(9), Bradley(6) and Peligrad(28) for various type of
dependence. We refer to the recent paper by Merlevède and Peligrad(25) for
more details on coupling techniques and their applications.

2. COUPLING

The following lemma ensures that the coefficient τ defined in (1.5)
does not depend on the choice of the conditional probability.

Lemma 2. Let (�,A,P) be a probability space, M a σ -algebra of
A and X an integrable real-valued random variable with distribution
PX. The function W(PX|M) defined in (1.4) is a M-measurable random
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variable. If P ′
X|M is another conditional distribution of X given M, then

W(PX|M)=W(P ′X|M)P-almost surely.

Proof. Recall that the set of finite combinations of indicators of
compact intervals is dense in L1(R, dx). Let

S =
{
f :f =

m∑
i=0

ai1[bi ,ci ],m∈N, (ai, bi, ci)∈Q3

}
.

Clearly, V is a countable dense subset of L1(R, dx). Define the set

�1,0(R)=
{
f :f (t)=a+

∫ t

0
((g(x)�1)∨−1)dx, a∈Q, g∈S

}
,

which is a countable subset of �1(R). Now, if f is an element of �1(R),
then f (t)=f (0)+∫ t0 g(u)du, where g is bounded by 1, Choose a sequence
gn in S such that

∫ n
−n |gn − g|(x)dx � 1/2n. Since g is bounded by 1,

the same is true with ((gn �1) ∨ −1) instead of gn. Let fn(t) = an +∫ t
0 ((gn(x)�1) ∨ −1)dx with an in Q such that |an − f (0)| � 1/2n. We

obtain that |fn(x)− f (x)| � 1/n for x in [−n,n], so that fn(x) converges
to f(x) for any x. Hence �1,0(R) is dense in �1(R) for the pointwise con-
vergence. Since X is integrable, we infer from Lebesgue’s theorem that

W(PX|M),= sup
{∣∣ ∫ f (x)PX|M(dx)−

∫
f (x)PX(dx)

∣∣, f ∈�1,0(R)

}
.

(2.1)

It follows that W(PX|M) is a M-measurable random variable. If P ′
X|M is

another conditional probability of X given M, then for any f in �1(R),P-
almost surely∣∣∣∣
∫
f (x)PX|M(dx)−

∫
f (x)PX(dx)

∣∣= ∣∣ ∫ f (x)P ′
X|M(dx)−

∫
f (x)PX(dx)

∣∣∣∣ .
Since �1,0(R) is countable, we infer from (2.1) that W(PX|M)=W(P ′

X|M)P-
a.s.

In Definitions 1, we extend the definition of τ to Banach spaces and
we introduce some well known coefficients.

Definition 1. Given a Banach space (E, | · |), let �1(E) be the set of
1-Lipschitz functions from E to R. Let (�,A,P) be a probability space.
We say that a random variable X with values in E is integrable if the var-
iable |X| is integrable, and we write ‖X‖1 = E(|X|). For any σ -algebra M
of A and any E-valued integrable variable X, define
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τ(M,X)= sup {τ(M, f (X)), f ∈�1(E)} (2.2)

The s-dependence coefficient of Coulon-Prieur and Doukhan(10) is defined
as

θ(M,X)= sup {‖E(f (X)|M)−E(f (X))‖1, f ∈�1(E)} . (2.3)

If X is real-valued, define the strong mixing coefficient

α(M,X)= sup {|P(A∩X� t)−P(A)P(X� t)|,A∈M, t ∈R} . (2.4)

If M and U are two σ -algebra of A, the strong mixing coefficient of Ro-
senblatt(33) is defined by

α(M,U)= sup {|P(A∩B)−P(A)P(B)|,A∈M,B ∈U} . (2.5)

The following elementary lemma will be very useful to obtain upper
bounds for the coefficient τ (see Section 3.1).

Lemma 3. Let (�,A,P) be a probability space, X an integrable ran-
dom variable with values in a Banach space (E, | · |), and M a σ -algebra
of A. If Y is a random variable distributed as X and independent of M,
then

τ(M,X)�‖X−Y‖1. (2.6)

Proof. If Y is independent of M and distributed as X, then for
any f in �1(E) and any g in �1(R) the random variable T (g) =∣∣ ∫ g(x)Pf (X)|M(dx)− ∫

g(x)Pf (X)(dx)| is a version of |E(g ◦ f (X)|M)−
E(g ◦ f (Y )|M)|. Consequently T (g) is P-almost surely – smaller than
any version of E(|X − Y || M). From the equality (2.1), we infer that
W(Pf (X)|M)= sup

{
T (g), g∈�1,0(R)

}
is P-almost surely smaller than any

version of E(|X−Y‖M). By definition τ(M, f (X))=‖W(Pf (X)|M)‖1, which
implies that τ(M, f (X))� ‖X−Y‖1.This being true for any function f of
�1(E), the result follows.

The main result of this section is that if X is real-valued and � is
rich enough, the equality can be reached in (2.6). This result is based on
Major’s quantile transformation (1978) which we recall in Lemma 4 (see
also Rio(32), p. 161).

Notations 1. For any distribution function F, define the generalized
inverse as follows: for any u in [0, 1], F−1(u)= inf {t ∈ R :F(t)� u}. It is
clear that F(t)�u if and only if t�F−1(u).
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Let (�,A,P) be a probability space, M a σ -algebra of A and
X a real-valued random variable. Let FM(t,ω)= PX|M(] − ∞, t ],ω). For
any ω,FM(.,ω) is a distribution function, and for any t, FM(t, .) is a
M-measurable random variable. For any ω, define the generalized inverse
F−1
M (u,ω) as in Notation 1. From the equality {ω : t � F−1

M (u,ω)} = {ω :
FM(t,ω)�u}, we infer that F−1

M (u, .) is M-measurable. In the same way,

{(t,ω) :FM(t,ω)�u}=
{
(t,ω) : t�F−1

M (u,ω)
}

, which implies that the map-
ping (t,ω)→FM(t,ω) is measurable with respect to B(R)

⊗
M. The same

arguments imply that the mapping (u,ω)→F−1
M (u,ω) is measurable with

respect to B([0,1])
⊗

M. Denote by FM(t)(resp.F−1
M (u)) the random var-

iable FM(t, .) (resp. F−1
M (u, .)), and let FM(t−0)= sups<tFM(s).

Lemma 4. Let (�,A,P) be a probability space, M a σ -algebra of
A and X an integrable real-valued random variable. Assume that there
exists a random variable δ uniformly distributed over [0,1], independent of
the σ -algebra generated by X and M. Define

U =FM(X−0)+ δ(FM(X)−FM(X−0)).

The random variable U is uniformly distributed over [0,1] and independent
of M. Moreover F−1

M (U)=XP-almost surely.

With the help of Lemma 4, we can now establish our coupling result

Lemma 5. Let (�,A,P) be a probability space, X an integrable
real-valued random variable, and M a σ -algebra of A. Assume that there
exists a random variable δ uniformly distributed over [0,1], independent of
the σ -algebra generated by X and M. Then there exists a random variable
X∗, measurable with respect to M∨ σ(X)∨ σ(δ), independent of M and
distributed as X, such that

‖X−X∗‖1 = τ(M,X). (2.7)

Remark 1. From Lemma 5, we infer that ‖X−X∗‖1 is the infimum
of ‖X−Y‖1, where Y is independent of M and distributed as X. This is
due to Major(24).

Proof. Let U be the random variable defined in Lemma 4 and F
be the distribution function of X. The random variable X∗ = F−l (U)
is measurable with respect to M ∨ σ(X) ∨ σ(δ), independent of M and
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distributed as X. Since X=F−1
M (U)P-almost surely, we have

‖X−X∗‖1 =E

(∫ 1

0
|F−1

M (u)−F−1(u)|du
)
. (2.8)

For two distribution functions F and G, denote by M(F,G) the set of
all probability measures on R×R with marginals F and G. Define

d(F,G)= inf
{∫

|x−y|µ(dx, dy) :µ∈M(F,G)
}

and recall that (see, Section 11.8, Problems 1 and 2 Dudley(17) p. 333)

d(F,G)=
∫

R

|F(t)−G(t)|dt=
∫ 1

0
|F−1(u)−G−1(u)|du. (2.9)

On the other hand, Kantorovich and Rubinstein (in Dudley(17) Theorem
11.8.2) have proved that

d(F,G)= sup
{∣∣∣∣
∫
f dF −

∫
f dG

∣∣∣∣ :f ∈�1(R)

}
. (2.10)

Combining (2.8), (2.9) and (2.10), we have that

∥∥X−X∗∥∥
1 =E

(
sup

{∣∣∣∣
∫
f dFM −

∫
f dF

∣∣∣∣ :f ∈�1(R)

})

and the proof is complete.

3. COMPARISON OF COEFFICIENTS AND EXAMPLES

Starting from Lemma 5, we can compare the coefficients θ(M,X),

τ (M,X) and α(M,X) when X is some real-valued random variable.

Notations 2. Let X be some random variable with values in some
Banach space (E, | · |). Let H|X|(x)=P(|X|>x), and

– Q|X| the generalized inverse of H|X|: if u∈ [0,1],Q|X|(u)= inf {t ∈
R :H|X|(t)�u}.

– G|X| the inverse of x→
∫ x

0
Q|X|(u)du.

– L|X| the inverse of x→xG|X|(x)
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Lemma 6. Let (�,A,P) be a probability space, X an integrable
real-valued random variable, and M a σ -algebra of A. The following
inequalities hold

τ(M,X) � 2
∫ 2α(M,X)

0
Q|X|(u)du, (3.1)

θ(M,X) � τ(M,X)�4L|X|(θ(M,X)). (3.2)

Remark 2. In particular, if p and q are two conjugate exponents,
(3.1) yields the upper bound τ(M,X)�2‖X‖p(2α(M,X))1/q .

Proof. To obtain (3.1), we use a recent result of Peligrad(29). In (c)
of Theorem 1 of her paper, she proves that if X∗ is the random variable
of Lemma 5,

‖X−X∗‖1 �4
∫ α(M,X)

0
Q|X|(u)du,

which is not exactly the required inequality. After a carefull reading of the
proof, we see that Peligrad establishes that if X+ =X∨0 and X− = (−X)∨
0,

‖X−X∗‖1 �2
∫ ∞

0
(α(M,X)∧P(X+>u)+α(M,X)∧P(X−>u))du.

Since a∧b+ c∧d� (a+ c)∧ (b+d), we obtain that

‖X−X∗‖1 �2
∫ ∞

0
(2α(M,X))∧H|X|(u)du�2

∫ ∞

0

∫ 2α(M,X)

0
It<H|X|(u)dt du.

The result follows by noting that t <H|X|(u) if and only if u<Q|X|(t).
To obtain (3.2), note that from (2.8) and (2.9),

‖X−X∗‖1 =
∫

R

‖E(IX�t |M)−P(X� t)‖1dt

=
∫ ∞

0
‖E(IX+�t |M)−P(X+ � t)‖1dt

+
∫ ∞

0
‖E(IX−<t |M)−P(X−<t)‖1dt. (3.3)

For any positive ε, let f tε (x)= Ix�t + ε−1(t+ ε−x)It<x�t+ε . Clearly

‖E(IX+�t |M)−P(X+ � t)‖1 � ‖E(f tε (X+)|M)−E(f tε (X+))‖1

+2P(X+ ∈ [t, t+ ε])

� ε−1θ(M,X)∧2P(X+>t)+2P(X+ ∈ [t, t+ ε])
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and the same is true for X−. Integrating (3.3) and applying Fubini, we
have that

‖X−X∗‖1 �
∫ ∞

0
ε−1θ(M,X)∧2P(X+>t)dt

+
∫ ∞

0
ε−1θ(M,X)∧2P(X−>t)dt+2ε

� 2
∫ ∞

0
ε−1θ(M,X)∧P(|X|>t)dt+2ε,

and consequently

‖X−X∗‖1 �2
∫ ε−1θ(M,X)

0
Q|X|(u)du+2ε.

The two terms on right hand are equal for ε =G−1
|X|(θ(M,X)/ε) which

means that ε=L|X|(θ(M,X)). This completes the proof.

We now define θ, τ and α for a sequence (Xi) of Banach-valued ran-
dom variables.

Definition 2. Let (E, |.|) be some Banach space. On Ek we put the
norm |.|1 defined by |x− y|1 = |x1 − y1| + · · ·+ |xk − yk|. Let (�,A,P) be
a probability space, (Xi)i>0 a sequence of E-valued random variables and
Mi a sequence of σ -algebra of A. For any positive integer k, define

θk(i)= max
1�l�k

1
l

sup{θ(Mp, (Xj1 , . . . ,Xjl )), p+ i� j1< · · ·<jl} and

θ(i)= sup
k�0

θk(i).

Define τk(i) and τ(i) in the same way. As usual, the coefficient α(i) is
defined by

αk(i)= sup{α(Mp, σ (Xj1 , . . . , Xjk )),p+ i� j1< · · ·<jk} and

α(i)= sup
k�0

αk(i).

With this definition, it is clear that if (Xi)i>0 is some sequence with coeffi-
cients θ(i) (resp. τ(i)) and if g is some L-lipschitz function, then the coeffi-
cients of the sequence (g(Xi))i>0 are smaller than Lθ(i) (resp. Lτ(i)).

The following lemma allows to compare the coefficients θk(i), τk(i)
and αk(i).
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Lemma 7. Let (�,A,P) be a probability space, (Xi)i>0 a sequence
of random variables with values in a Banach space (E, |.|) and Mi a
sequence of σ -algebra of A. Let X be some nonnegative random variable
such that QX� supk�1Q|Xk |. The following inequalities hold

τk(i)�2
∫ 2αk(i)

0
QX(u)du, and θk(i)� τk(i)�4LX(θk(i)).

Proof. We first compare τ and α. Without loss of generality, we can
assume that f (0, . . . ,0)= 0 in the definition of τ(M,X). For p+ i� j1<

· · ·<jl and f in �1(E
l), we infer from Lemma 6 that

τ(Mp, f (Xj1 , . . . ,Xjl )) � 2
∫ 2αk(i)

0
Q|f (Xj1 ,...,Xjl )|(u)du

� 2
∫ 2αk(i)

0
Q|Xj1 |+···+Xjl |(u)du. (3.4)

From Lemma 2.1 in Rio (32) we know that if Z1, Z2 and Z3 are three non-
negative random variables, then

∫ 1

0
QZ1+Z2(u)QZ3(u)du�

∫ 1

0
(QZ1(u)+QZ2(u))QZ3(u)du.

Applying this result with QZ3(u)= Iu�2αk(i), we infer from (3.4) that

τ(Mp, f (Xj1 , . . . ,Xjl )) � 2
∫ 2αk(i)

0
Q|Xj1 |(u)+· · ·+Q|Xjl |(u)du

� 2l
∫ 2αk(i)

0
QX(u)du,

and the result follows from the definition of τk(i).
Let us prove that τk(i)�4LX(θk(i)). Applying once again Lemma 2.1

in Rio(32), we obtain that∫ x

0
Q|Xj1 |+···+|Xjl |(u)du� l

∫ x

0
QX(u)du.

Hence G|f (Xj1 ,...,Xjl )|(u) � GX(u/l) and therefore L|f (Xj−1,...,Xjl )|(u) �
lLX(u/l). Consequently, for p+ i� j1< · · ·<jl ,

τ(Mp, f (Xj1 , . . . ,Xjl ))�4lLX(θ(Mp, f (Xj1 , . . . ,Xjl))/ l)�4lLX(θk(i))

and the result follows from the definition of τk(i).
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3.1. Examples

We can use Lemma 7 to obtain upper bounds for the coefficients
(τ (i))i>0 of an α-mixing sequence (or a s-dependent sequence). We refer
to the book of Doukhan(14) for examples of α-mixing processes and to
the paper by Coulon-Prieur and Doukhan(10) for examples of s-dependent
sequences (see also the paper by Doukhan and Louhichi(15)).

Concerning the examples given by Coulon-Prieur and Doukhan, it is
easy to see that we can obtain the same bounds for τ(i) as those obtained
for θ(i). In each case, the result follows by applying Lemma 3.

In this section, we show how to compute upper bounds for the coeffi-
cient τ(i) for three large classes of examples. In Examples 1 and 2 we
apply Lemma 3 to obtain an upper bound for τ(i), while in Example 3
we start from the definition of τ(i).

Example 1 causal Bernoulli shifts. Let (ξi)i∈Z be a sequence of i.i.d.
random variables with values in a measurable space X. Assume that there
exists a function H defined on a subset of XN, with values in a Banach
space (E, |.|), and such that H(ξ0, ξ−1, ξ−2, . . . , ) is defined almost surely.
The stationary sequence (Xn)n>0 defined by Xn=H(ξn, ξn−1, ξn−2, . . . , ) is
called a causal Bernoulli shift.

Let (ξ ′
i )i∈Z be a sequence of i.i.d. random variables, independent of

(ξi)i∈Z and distributed as (ξi)i∈Z. Let (δi)i>0 be a decreasing sequence
such that

‖H(ξi, ξi−1, ξi−2, . . . )−H(ξi, ξi−1, ξi−2, . . . , ξ1, ξ
′
0, ξ

′
−1, . . . )‖1 � δi .

If Mi =σ(Xj , j � i), the coefficient τk(i) of (Xn)n>0 satisfies τk(i)� δi .
Proof. Define X′

n =H(ξn, . . . , ξ1, ξ
′
0, ξ

′
−1, . . . ). The sequence (X′

n)n>0
is distributed as (Xn)n>0 and is independent of the σ -algebra M0. From
Lemma 3 we have that, for jk > · · ·>j1 � i,

τ(M0, (Xj1 , . . . ,Xjk ))�
k∑
l=1

‖Xjl −X′
jl
‖1 �kδi .

The result follows by using the stationarity of (Xn)n>0 and the definition
of τ(i).

Application 1 causal linear processes. In that case X = R and Xn is
defined by Xn = ∑

j�0 aj ξn−j . If |ξ0| is integrable, we can take δi =∑
j�i |aj |‖ξ0 − ξ ′

0‖1. Let 
(ξ0)= infa∈R‖ξ0 −a‖1. Since ‖ξ0 − ξ ′
0‖1 �2
(ξ0),

we see that δi � 2
(ξ0)
∑
j�i |aj |. If ξ2

0 is integrable, we can take δi =
(2Var(ξ0)

∑
j�i a

2
j )

1/2. For instance, if ai = 2−i−1 and ξ0 ∼ B(1/2), δi =
2−i√1/6. Recall that in that case, αi =1/4 for any positive integer i.
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Example 2 iterative random functions. Let (Xn)n�0 be a stationary
Markov chain, with values in a Banach space (E, |.|) and such that Xn=
F(Xn−1, ξn) for some measurable function F and some i.i.d. sequence
(ξi)i�0 independent of X0. Let X′

0 be a random variable independent of
(X0, (ξi)i >0) and distributed as X0, and define X′

n=F(X′
n−1, ξn).

τ(σ (X0), (Xj1 , . . . ,Xjk ))�
k∑
l=1

‖Xjl −X′
jl
‖1.

Let µ be the distribution of X0 and (Xxn)n�0 the chain starting from Xx0 =
x. With these notations, we have that

τ(σ (X0), (Xj1 , . . . ,Xjk ))�
k∑
l=1

∫ ∫
‖Xxjl −X

y
jl
‖1µ(dx)µ(dy). (3.5)

For instance, assume that there exists a decreasing sequence (δi)i�0 of pos-
itive numbers such that ‖Xxi −Xyi ‖1 � δi |x−y|. In that case

τ(σ (X0), (Xj1 , . . . ,Xjk ))�kδi‖X0 −X′
0‖1

and consequently τ(i)�δi‖X0 −X′
0‖1. For instance in the usual case where

‖F(x, ξ0)−F(y, ξ0)‖1 � κ|x − y| for some κ < 1, we can take δi = κi . An
important example is Xn=f (Xn−1)+ ξn for some κ-lipschitz function f.

Application 2 functional autoregressive processes. We give a simple exam-
ple of a non contractive function for which the coefficient τ(i) decreases
arithmetically. Given δ∈ [0,1[,C ∈]0,1] and S�1, let L(C, δ) be the class
of 1-Lipschitz functions f such that

f (0)=0 and |f ′(t)|�1−C(1+|t |)−δ almost everywhere.

Let ARL(C, δ, S) be the class of real-valued Markov chains (Xn)n>0 solu-
tions of the equation Xn = f (Xn−1)+ ξn, where f ∈L(C, δ) and ‖ξ0‖S <
∞. Dedecker and Rio(12) have proved that for any Markov chain belonging
to ARL(C, δ, S), there exists an unique invariant probability µ, and that
µ(|x|S−δ) <∞. Starting from (3.5) and arguing as in Dedecker and Rio,
we can prove that if S > 1 + δ the coefficients of the stationary chain sat-
isfy τ(n)=O(n(δ+1−S)/δ).

Example 3 other Markov chains. Let P be a Markov kernel defined
on a measurable subset X of a Banach space (E, |.|). For any continuous
bounded function f from X to R we have

P(f )(x)=
∫
X
f (z)P (x, dz).
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We make the following assumptions on P
H For some 0<κ <1, P maps �1(X) to �κ(X).

Let (Xn)n∈N be a stationary Markov chain with values in X, with
marginal distribution µ and transition kernel P satisfying H. Then for
jk > · · ·>j1 � i and f in �1(X

k), the function E(f (Xj1 , . . . ,Xjk )|Xj1 = x)
belongs to �1+κ+···+κk−1(X) and consequently fj1,...,jk (x)=E(f (Xj1 , . . . ,Xjk )|X0 =
x) belongs to �kκi (X). Since

τ(σ (X0), (Xj1 , . . . ,Xjk ))�∫ ∫
sup

f∈�1(X k)

|fj1 , . . . ,jk (x)−fj1 , . . . ,jk (y)|µ(dx)µ(dy),

we infer that

τ(σ (X0), (Xj1 , . . . ,Xjk ))�kκi‖X0 −X′
0‖1, (3.6)

where X′
0 is independent of X0 and distributed as X0. By definition of τ ,

we infer from (3.6) that τ(i)�κi‖X0 −X′
0‖1 and the chain is geometrically

τ -dependent.
In the case of iterated random maps (Example 2) the map F is a mea-

surable function from X×Y to X, and the transition kernel P has the
form

P(f )(x)=
∫
Y
f (F (x, z))ν(dz) (3.7)

for some probability measure ν on Y. The assumption H is satisfied as
soon as

∫ |F(x, z)−F(y, z)|ν(dz)�κ|x−y|, which was the condition pre-
viously found.

We now consider the more general situation

P(f )(x)=
∫
Y
b(x, z)f (F (x, z))ν(dz), (3.8)

where ν is a measure on Y and b(x, y)ν(dy) is a probability measure for
each x in X. For simplicity, we assume that E=R and that X=I is either
R, [a, b], [a,∞[ or ] −∞, b]. According to property 34.5 in McShane(26) a
function g from I to R is M-lipshitz if and only if

sup
x∈I

lim sup
h→0

|f (x+h)−f (x)|
|h| �M.
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Starting from this property, we infer that H is satisfied as soon as, for any
x in I,

lim sup
h→0

1
|h|

(∫
b(x+h, z)|F(x+h, z)−F(x, z)|ν(dz)

+
∫

|b(x+h, z)−b(x, z)‖F(x, z)|ν(dz)
)

�κ. (3.9)

In particular, if for ν-almost every z the functions x → b(x, z) and x →
F(x, z) are derivable and the functions b(x, z)|F ′(x, z)| and |b′(x, z)F (x, z)|
are each bounded by integrable functions not depending on z, (3.9) writes
in fact: for any x in I,∫

b(x, z)|F ′(x, z)|+ |b′(x, z)F (x, z)|ν(dz)�κ. (3.10)

Application 3 Markov kernel associated to expanding maps. In this exam-
ple, X= I = [0,1]. We consider a transformation T from [0, 1] to [0, 1].
Assume that there exist N in N∗ ∪+∞ and a partition ([aj , aj+1[)1�j�N
of [0, 1[ such that:

- For each 1 � j �N , the restriction Tj of T to ]aj , aj+1[ is strictly
monotonic and can be extended to a function T̄j belonging to
C1([aj , aj+1]). Moreover T̄j ([aj , aj+1])= [0,1].

Denote by λ the Lebesgue measure on [0, 1], and define the operator �
from L

1(I, λ) to L
1(I, λ) via the equality

∫ 1

0
�(f )(x)g(x)λ(dx)=

∫ 1

0
f (x)(g ◦T )(x)λ(dx),

where f ∈L1(I, λ), g∈L∞(I, λ).
By definition of T, we infer that for any continuous bounded function f,

�(f )(x)=
N∑
j=1

f (σj (x))|σ ′
j (x)|,

where σj = T̄ −1
j .

See Broise(8) for more details on the operator �. Assume that there exists
a positive density h such that T preserves the probability measure hλ (or
equivalently �(h)=h). On the probability space (I, hλ), the sequence (g ◦
T j )j�0 is strictly stationary. Moreover the vector (g, g ◦T , . . . , g ◦T n) has
the same distribution as (g(Xn), g(Xn−1), . . . , g(X0)), where (Xi)i�0 is a
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stationary Markov chain with invariant distribution hλ and transition ker-
nel P given by

P(f )(x)= �(hf )(x)

h(x)
=
∑N
j=1 h(σj (x))f (σj (x))|σ ′

j (x)|∑N
j=1 h(σj (x))|σ ′

j (x)|
.

In particular, P has the form (3.8) with ν =∑N
i=1 δi,F (x, i)= σi(x) and

b(x, i)= h(σi(x))|σ ′
i (x)|/h(x). Consequently, the chain is geometrically τ -

dependent as soon as (3.9) holds. Let us chek this condition on some
examples.

– If Tj is linear, then h≡1, σ ′
j is constant, and

∑N
j=1 |σ ′

j |=1. Hence
the chain is geometrically τ -dependent as soon as N�2, with κ=
sup1�i�N |σ ′

i |. In fact, this is an example of iterated random maps,
since the kernel P has the form (3.7) with F(x, i)=σi(x) and ν=∑N
j=1 |σ ′

j |δi . In particular, if T (x)=Kx mod 1 for some integer
K�2, then κ=1/K.

– Denote by {x}= x− [x], [x] being the integer part of x. If T (x)=
{a(x−1 −1)} for some positive real a, then h(x)=1/((x+a) ln(1+
1/a)) and

P(f )(x)= (x+a)
∞∑
n=0

f

(
a

x+n+a
)(

1
x+n+a − 1

x+n+1+a
)
.

If a�1, one can easily see that (3.10) holds (for a=1, κ=421/432 works).

4. EXPONENTIAL AND MOMENT INEQUALITIES

Theorem 1 of this section extends Bennett’s inequality for indepen-
dent sequences to the case of τ -dependent sequences. For any positive inte-
ger q, we obtain an upper bound involving two terms: the first one is the
classical Bennett’s bound at level λ for a sum

∑n
i=1 ξi of independent vari-

ables ξi such that Var(
∑n
i=1 ξi)=υq and ‖ξi‖∞ �qM, and the second one

is equal to nλ−1τq(q+1). Using Lemma 7, we obtain the same inequalities
as those established by Rio(32) for strongly mixing sequences. This is not
surprising, for we follow the proof of Rio and we use Lemma 5 instead of
Rio’s coupling lemma. Note that the same approach has been previously
used by Bosq(5), starting from Bradley’s coupling lemma (1983).

Theorem 1. Let (Xi)i>0 be a sequence of real-valued random vari-
ables such that ‖Xi‖∞ �M, and Mi = σ(Xk,1 � k � i). Let Sk =∑k

i=1
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(Xi − E(Xi)) and S̄n = max1�k�n |Sk|. Let q be some positive integer, υq
some nonnegative number such that

υq �‖Xq[n/q]+1 +· · ·+Xn‖2
2 +

[n/q]∑
i=1

‖X(i−1)q+1 +· · ·+Xiq‖2
2,

and h the function defined by h(x)= (1+x) ln(1+x)−x.

1. For λ>0,P(|Sn|�3λ)�4 exp
(
− υq

(qM)2
h
(
λqM
υq

))
+ n
λ
τq(q+1).

2. For λ�Mq,

P(S̄n� (1q>1 +3)λ)�4 exp
(
− υq

(qM)2
h
(
λqM
υq

))
+ n
λ
τq(q+1).

Proof. We proceed as in Rio(32) p. 83. For 1 � i � [n/q], define the
variables Ui =Siq −Siq−q and U[n/q]+1 =Sn−Sq[n/q]. Let (δj )1�j�[n/q]+1 be
independent random variables uniformly distributed over [0,1] and inde-
pendent of (Uj )1�j�[n/q]+1. We apply Lemma 5: For any 1� i� [n/q]+1,
there exists a measurable function Fi such that U∗

i =Fi(U1, . . . ,Ui−2,Ui, δi)

satisfies the conclusions of Lemma 5, with M = σ(Ul, l � i − 2). The
sequence (U∗

i )1�i�[n/q]+1 has the following properties:

a. For any 1� i� [n/q]+1, the random variable U∗
i is distributed as

Ui .
b. The variables (U∗

2i )2�2i�[n/q]+1 are independent and so are
(U∗

2i−1)1�2i−1�[n/q]+1.
c. Moreover ‖Ui −U∗

i ‖1 = τ(σ (Ul, l� i−2),Ui).

Since for 1� i� [n/q] we have τ(σ (Ul, l� i−2),Ui)�qτq(q+1), we infer
that

for 1� i� [n/q], ‖Ui −U∗
i ‖1 � qτq(q+1) (4.1)

and ‖U[n/q]+1 −U∗
[n/q]+1‖1 � (n−q[n/q])τn−q[n/q](q+1).

Proof of 1. Clearly

|Sn|�
[n/q]+1∑
i=1

|Ui −U∗
i |+

∣∣∣ ([n/q]+1)/2∑
i=1

U∗
2i

∣∣∣+ ∣∣∣ [n/q]/2+1∑
i=1

U∗
2i−1

∣∣∣. (4.2)

Combining (4.1) with the fact that τn−q[n/q](q+1)� τq(q+1), we obtain

P


[n/q]+1∑

i=1

|Ui −U∗
i |�λ


� n

λ
τq(q+1). (4.3)



Coupling for Dependent Sequences 877

The result follows by applying Bennett’s inequality to the two other sums
in (4.2).

The proof of the second item is omitted. It is similar to the proof of
theorem 6.1 in Rio(32), p. 83, for α-mixing sequences.

Proceeding as in Theorem 1, we establish Fuk-Nagaev type inequali-
ties (see Fuk and Nagaev(18)) for sums of τ -dependent sequences. Applying
Lemma 7, we obtain the same inequalities (up to some numerical con-
stant) as those established by Rio(32) for strongly mixing sequences.

Notations 3. For any non-increasing sequence (δi)i�0 of nonnega-
tive numbers, define δ−1(u)=∑i�0 Iu<δi = inf{k∈N : δk �u}. For any non-
increasing cadlag function f define the generalized inverse f−1(u)= inf{t :
f (t)�u}. Note that δ−1 is the generalized inverse of the cadlag function
x→ δ[x], [.] denoting the integer part.

Theorem 2. Let (Xi)i>0 be a sequence of centered and square inte-
grable random variables, and define (Mi )i>0 and S̄n as in Theorem 1. Let
X be some positive random variable such that QX� supk�1Q|Xk | and

s2
n =

n∑
i=1

n∑
j=1

|Cov(Xi,Xj )|.

Let R= ((τ/2)−1 ◦G−1
X )QX and S=R−1. For any, λ>0 and r�1,

P(S̄n�5λ)�4

(
1+ λ2

rs2
n

)−r/2
+ 4n
λ

∫ S(λ/r)

0
QX(u)du. (4.4)

Proof. Since Ūi = (Ui ∧ qM) ∨ (−qM) is a 1-Lipschitz function of
Ui , we have τ(σ (Ul, l � i − 2), Ūi)� qτq(q + 1). Since s2

n � ‖Ū1‖2
2 + · · · +

‖Ū[n/q]‖2
2 we obtain

P


 max

1�j�[n/q]

∣∣∣ j∑
i=1

(Ūi −E(Ūi))

∣∣∣�3λ


� 4

(
1+ λ2

rs2
n

)−r/2

+n
λ
τ(q+1). (4.5)

Choose v = S(λ/r), q = (τ/2)−1 ◦ G−1
X (v) and M = QX(v). Clearly, we

have that qM = R(v) = R(S(λ/r)) � λ/r. Let ϕM(x) = (|x| −M)+. Since
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M=QX(v),

P

(
n∑
k=1

(E(ϕM(Xk))+ϕM(Xk))�λ
)

� 2n
λ

∫ v

0
QX(u)du. (4.6)

The choice of q implies that τ(q)�2
∫ v

0 QX(u)du. Since qM�λ, the result
follows from (4.5), (4.6) and inequality (6.12) in Rio(32).

Corollary 1. Let (Xi)i>0 be a sequence of centered random variables
belonging to Lp for some p � 2. Define (Mi )i>0, S̄n,QX and sn as in
Theorem 2. We have

‖S̄n‖pp�apspn +nbp
∫ ‖X‖1

0
((τ/2)−1(u))p−1Q

p−1
X ◦Gx(u)du,

where ap = 4p5p(p+ 1)p/2 and (p− 1)bp = 4p5p(p+ 1)p−1. Moreover we
have that

s2
n �4n

∫ ‖X‖1

0
(τ/2)−1(u)QX ◦GX(u)du.

Proof. It suffices to integrate (4.4) (as done in Rio(32) p. 88) and to
note that∫ 1

0
Q(u)(R(u))p−1(u)du=

∫ ‖X‖1

0
((τ/2)−1(u))p−1Q

p−1
X ◦GX(u)du.

The bound for s2
n holds with θ instead of τ (see Dedecker and Doukhan(11)).

5. STRONG INVARIANCE PRINCIPLE

The main result of this section is a strong invariance principle for par-
tial sums of τ -dependent sequences. Let (Xi)i∈Z be a stationary sequence
of zero-mean square integrable random variables, and Mi = σ(Xj , j � i).
Define

Sn=X1 +· · ·+Xn and Sn(t)=S[nt ] + (nt− [nt ])X[nt ]+1.

Assume that n−1Var(Sn) converges to some constant σ 2 as n tends to
infinity (this will always be true for any of the conditions we shall use
hereafter). For σ >0, we study the almost sure behavior of the partial sum
process {

σ−1(2n ln ln n)−1/2Sn(t) : t ∈ [0,1]
}
. (5.1)
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Let S be the subset of C([0,1]) consisting of all absolutely continuous
functions with respect to the Lebesgue measure such that h(0)= 0 and∫ 1

0 (h
′(t))2 dt �1.
Strassen(35) proved that if the sequence (Xi)i∈Z is i.i.d. then the pro-

cess defined in (5.1) is relatively compact with a.s. limit set S. This result
is known as the functional law of the iterated logarithm (FLIL for short).
Heyde and Scott(22) extended the FLIL to the case where E(X1|M0)= 0
and the sequence is ergodic. Starting from this result and from a coboun-
dary decomposition due to Gordin(20), Heyde(23) proved that the FLIL
holds if E(Sn|M0) converges in L2 and the sequence is ergodic. Applying
Proposition 1 in Dedecker and Doukhan(11), we see that Heyde’s condition
holds as soon as

∞∑
k=1

k

∫ γ (k)/2

0
Q◦G(u)du<∞, (5.2)

where the functions Q=Q|X0| and G=G|X0| have been defined in Nota-
tion 2 and γ (k)=‖E(Xk|M0)‖1 is the coefficient introduced by Gordin(21).

Other types of dependence have been soon considered for the FLIL
(see for instance the review paper by Philipp(30)). For ρ and φ-mixing
sequences, a strong invariance principle is given in Shao(34). The case of
strongly mixing sequences has been considered by Oodaira and Yoshiha-
ra(27), Dehling and Philipp(13) and Bradley(6) among others. Rio(31) proved
a FLIL (and even a strong invariance principle) for the process defined in
(5.1) as soon as the DMR (Doukhan, Massart and Rio(16)) condition (5.3)
is satisfied

∞∑
k=1

∫ 2α(k)

0
Q2(u)du<∞. (5.3)

From Lemma 7, we easily infer that∫ γ (k)/2

0
Q◦G(u)du�

∫ τ(k)/2

0
Q◦G(u)du�

∫ 2α(k)

0
Q2(u) du. (5.4)

Hence a reasonable conjecture for the FLIL is that condition (5.2) holds
without the k in front of the integral. Actually, we can only prove this
conjecture with τ(k) instead of γ (k), that is the FLIL holds as soon as

∞∑
k=1

∫ τ(k)/2

0
Q2(u) du<∞. (5.5)

More precisely, we shall prove that
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Theorem 3. Let (Xn)n∈Z be a strictly stationary sequence of centered
and square integrable random variables satisfying (5.5). Then n−1Var(Sn)
converges to σ 2, and there exists a sequence (Yn)n∈N of independent
N(0, σ 2)-distributed random variables (possibly degenerate) such that

n∑
i=1

(Xi −Yi)=o(
√
n ln ln n) a.s

Such a result is known as a strong invariance principle. If σ > 0, Theo-
rem 3 and Strassen’s FLIL for the Brownian motion yield the FLIL for
the process (5.1).

Starting from (5.5) and applying Lemma 2 of Dedecker and Doukhan(11),
we obtain some simple sufficient conditions for the FLIL to hold.

Corollary 2. Let (Xi)i∈Z be a strictly stationary sequence of centered
and square integrable random variables. Any of the following conditions
implies (5.5) and hence the FLIL.

1. P(|X0|>x)� (c/x)r for some r >2, and
∑
i�0 (τ (i))

(r−2)/(r−1) <∞.
2. ‖X0‖r <∞ for some r >2, and

∑
i�0 i

1/(r−2)τ (i)<∞.
3. E(|X0|2 ln(1+|X0|))<∞ and τ(i)=O(ai) for some a<1.

Now, according to Lemma 7 and to the examples given in Doukhan,
Massart and Rio(16), we can see that Condition (5.5) is essentially opti-
mal. For instance, Corollary 3 below follows easily from Proposition 3 in
Doukhan, Massart and Rio.

Corollary 3. For any r >2, there is stationary Markov chain (Xi)i∈Z

such that

1. E(X0) = 0 and, for any nonnegative real x,P(|X0| > x) =
min(1, x−r ).

2. The sequence (τi)i�0 satisfies supi�0 i
(r−1)/(r−2)τ (i)<∞.

3. lim sup
n→∞

(n ln lnn)−1/2|Sn|=+∞ almost surely.

5.1. Proofs

Notations 4. Let � =
{
ψ : N → N,ψ increasing, ψ(n)

n
→ ∞,

ψ(n)

n
√
LLn

=
o(1)

}
. If ψ is some function of �, let M1 =0 and Mn=∑n−1

k=1(ψ(k)+k) for
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n�2. For n�1, define Un=∑Mn+ψ(n)
i=Mn+1 Xi,Vn=∑Mn+1

i=Mn+1+1−n Xi and U ′
n=∑Mn+1

i=Mn+1 |Xi |. If LX=max(1, Inx), define the random variables

Ūn=max
(

min
(
Un,

n√
LLn

)
,

−n√
LLn

)
.

Theorem 3 is a consequence of (a), (b) and (c) of Proposition 2 in Rio(31)

(see the proof of Theorem 1 (iii) in Rio’s paper). The fact that (5.5)
implies (a) and (c) can be done done exactly as in Rio (we need only note
that, since Ūn is a 1-Lipschitz function of Ui, τ (σ (Ui, i � n− 1), Ūn)�
ψ(n)τ(n)). It remains to prove that (5.5) implies point (b) of Rio’s prop-
osition, that is

∞∑
n=1

E|Un− Ūn|
n
√
LLn

<∞. (5.6)

Proof of (5.6). Note first that

E|Un− Ūn| = E

((
|Un|− n√

LLn

)
+

)
so that

E|Un− Ūn| =
∫ +∞

n√
LLn

P(|Un|>t)dt. (5.7)

Let Q=Q|X0|. Since Un is distributed as Sψ(n), we infer from Theorem 2
that

P (|Un|>t)�4

(
1+ t2

25 rs2
ψ(n)

)− r
2

+ 20ψ(n)
t

∫ S( t5r )

0
Q(u)du. (5.8)

Consider the two terms

A1,n = 4

n
√
LLn

∫ +∞
n√
LLn

(
1+ t2

25 rs2
ψ(n)

)− r
2

dt,

A2,n = 20ψ(n)

n
√
LLn

∫ +∞
n√
LLn

1
t

∫ S( t5r )

0
Q(u)dudt.

From (5.7) and (5.8), we infer that E|Un− Ūn|/n
√
LLn�A1,n+A2,n.
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Study of A1,n. From (5.5), we infer that s2
ψ(n) =O(ψ(n)). Let Cr denote

some constant depending only on r. We have

A1,n� 4

n
√
LLn

∫ +∞
n√
LLn

t−r

Crs
−r
ψ(n)

dt�Crsrψ(n)
n−r

LLn1− r
2
.

Hence A1,n=O (ψ(n)r/2n−rLLn(r−2)/2
)
. Since ψ ∈� and r >2,

∑
n�1A1,n

<∞.

Study of A2,n. We use the elementary result: if (ai)i�1, is a sequence of
positive numbers, then there exists a sequence of positive numbers (bi)i�1
such that bi→∞ and

∑
i�1 aibi <∞ if and only if

∑
i�1 ai <∞ (note that

b2
n= (∑∞

i=n ai)−1 works). Consequently
∑
n�1A2,n is finite for some ψ ∈�

if and only if

∑
n�1

1√
LLn

∫ +∞
n√
LLn

1
t

∫ S( t5r )

0
Q(u)dudt <+∞. (5.9)

Recall that S = R−1, with the notations of Theorem 2. To prove (5.9),
write

∫ +∞
n√
LLn

1
t

∫ S( t5r )

0
Q(u)dudt =

∫ +∞
n√
LLn

1
t

∫ 1

0
1R(u)� t

5r
Q(u)dudt

=
∫ 1

0
Q(u)

∫ 5rR(u)

n√
LLn

1
t
dt du

=
∫ 1

0
Q(u) ln

5rR(u)
n√
LLn

1R(u)� n

5r
√
LLn
du.

Consequently (5.9) holds if and only if

∫ 1

0
Q(u)

∑
n�1

1√
LLn

ln
5rR(u)

n√
LLn

1R(u)� n

5r
√
LLn
du<+∞. (5.10)

To see that (5.10) holds, we shall prove the following result: if f is any
increasing function such that f (0)= 0 and f (1)= 1, then for any positive
R we have that

∑
n�1

ln
(

R

f (n)

)
(f (n)−f (n−1))1f (n)�R �max(R−1,0)�R. (5.11)
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Applying this result to f (x)=x(LLx)−1/2 and R=5rR(u), and noting that
(LLn)−1/2 �C(f (n)−f (n−1)) for some constant C>1, we infer that∫ 1

0
Q(u)

∑
n�1

1√
LLn

ln
5rR(u)

n√
LLn

1R(u)� n

5r
√
LLn
du�5Cr

∫ 1

0
Q(u)R(u)du,

which is finite as soon as (5.5) holds.
It remains to prove (5.11). If R�1, the result is clear. Now, for R>1,

let xR be the greatest integer such that f (xR)�R and write R∗ = f (xR).
Note first that∑

n�1

ln(R)(f (n)−f (n−1))IIf (n)�R �R∗ ln(R). (5.12)

Since
∑
n�1 ln(f (n))(f (n) − f (n − 1))1f (n)�R = ∑xR

n=1 ln(f (n))(f (n) −
f (n−1)) it follows that

∑
n�1

ln(f (n))(f (n)−f (n−1))�
∫ R∗

1
ln(x)dx=R∗ ln(R∗)−R∗ +1.

(5.13)

Using (5.12) and (5.13) we get that

∑
n�1

ln
(

R

f (n)

)
(f (n)−f (n−1))1f (n)�R �R∗ −1+R∗(ln(R)− ln(R∗)).

(5.14)

Since R∗(ln(R)− ln(R∗))� R − R∗, (5.11) follows. The proof of (5.6) is
complete.
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