On the complexity of computing characteristic polynomials

joint work with P. Karpman, V. Neiger, H. Signargout, A. Storjohann and G. Villard

Clément Pernet
Grenoble INP - UGA, France
Recent Trends in Computer Algebra: Fundamental Algorithms and Algorithmic complexity, Insitut Henri Poincarré, Paris. September 28, 2023

Introduction

Introduction

Context

- Exact linear algebra: over a field \mathbb{K}, (sometimes a ring R or \mathbb{Z})
- Mostly algebraic complexity, counting field operations, (sometimes bitcomplexity)

Problem

Given $\mathbf{M} \in \mathbb{K}^{\mathbf{m} \times \mathfrak{m}}$, compute $\chi_{\mathbf{M}}=\operatorname{det}\left(\chi \mathbf{I}_{\mathfrak{m}}-\mathbf{M}\right) \in \mathbb{K}[\chi]$.

Applications

- Matrix invariants (eigenvalues, invariant factors), test for similarity
- Invariant subspace decomposition
- Gröbner basis (change of ordering)
- Modular forms (action of the Hecke Operator)

A challenging complexity problem: dense linear algebra over a field

Dense linear algebra: reductions of most problems to matrix multiplication
ω : a feasible exponent of MatMul over $\mathbb{K}: \mathfrak{m} \times \mathfrak{m}$ by $\mathfrak{m} \times \mathfrak{m}$ in $O\left(\mathfrak{m}^{\omega}\right)$

A challenging complexity problem: dense linear algebra over a field

Dense linear algebra: reductions of most problems to matrix multiplication
ω : a feasible exponent of MatMul over $\mathbb{K}: m \times m$ by $m \times m$ in $O\left(m^{\omega}\right)$

A challenging complexity problem: dense linear algebra over a field

Dense linear algebra: reductions of most problems to matrix multiplication
ω : a feasible exponent of MatMul over \mathbb{K} : $\mathfrak{m} \times \mathfrak{m}$ by $\mathfrak{m} \times \mathfrak{m}$ in $O\left(\mathfrak{m}^{\omega}\right)$

$\left.\begin{array}{c}\left.\begin{array}{c}\text { LinSys } \\ \text { Det } \\ \text { Rank } \\ \text { PLUQ } \\ \text { TRSM } \\ \text { Inverse }\end{array}\right\}=\mathrm{O}(\text { MatMul }) \\ \text { MatMul }=O\left(\begin{array}{c}\text { Det, } \\ \text { PLUQ, } \\ \text { CharPoly, } \\ \text { Inverse }\end{array}\right.\end{array}\right)$

A challenging complexity problem: dense linear algebra over a field

Dense linear algebra: reductions of most problems to matrix multiplication
ω : a feasible exponent of MatMul over \mathbb{K} : $\mathfrak{m} \times \mathfrak{m}$ by $\mathfrak{m} \times \mathfrak{m}$ in $O\left(\mathfrak{m}^{\omega}\right)$

Challenge: CharPoly $=\mathrm{O}($ MatMul $)$?

A challenging complexity problem: sparse/structured linear algebra over a field

Sparse matrices via black-box methods

- Only operation: Mat \times Vect \rightarrow Cost: E

A challenging complexity problem: sparse/structured linear algebra over a field

Sparse matrices via black-box methods

- Only operation: Mat \times Vect \rightarrow Cost: E
- [Wiedeman 86]: $\operatorname{Minpoly}(m)=\mathrm{O}\left(m E+m^{2}\right)$

A challenging complexity problem: sparse/structured linear algebra over a field

Sparse matrices via black-box methods

- Only operation: Mat \times Vect \rightarrow Cost: E
- [Wiedeman 86]: $\operatorname{Minpoly}(m)=\mathrm{O}\left(m E+m^{2}\right)$
- [Villard 01]: Charpoly $(m)=O\left(m^{1.5} E+m^{2.5}\right)$

A challenging complexity problem: sparse/structured linear algebra over a field

Sparse matrices via black-box methods

- Only operation: Mat \times Vect \rightarrow Cost: E
- [Wiedeman 86]: Minpoly $(\mathfrak{m})=\mathrm{O}\left(m E+\mathfrak{m}^{2}\right)$
- [Villard 01]: Charpoly $(\mathrm{m})=\mathrm{O}\left(\mathrm{m}^{1.5} \mathrm{E}+\mathrm{m}^{2.5}\right)$
- [Villard 03]: Charpoly $(\mathrm{m})=\mathrm{O}\left(\mathrm{m}^{2.36}\right)$ when $\mathrm{E}=\mathrm{O}(\mathrm{m})$

Challenge: Blackbox methods \ll Dense methods

A challenging complexity problem: sparse/structured linear algebra over a field

Sparse matrices via black-box methods

- Only operation: Mat \times Vect \rightarrow Cost: E
- [Wiedeman 86]: Minpoly $(m)=\mathrm{O}\left(m E+m^{2}\right)$
- [Villard 01]: Charpoly $(m)=O\left(m^{1.5} E+m^{2.5}\right)$
- [Villard 03]: Charpoly $(m)=\mathrm{O}\left(\mathrm{m}^{2.36}\right)$ when $\mathrm{E}=\mathrm{O}(\mathrm{m})$

Challenge: Blackbox methods \ll Dense methods

Matrices with rank displacement structure

- Toeplitz, Hankel, Cauchy, Vandermonde, etc
- Generalization: $\operatorname{rank}(\Delta(\mathbf{A}))=\alpha \ll \mathrm{m}$
- [Bostan-Jeannerod-Mouilleron-Schost 17] LinSys, Det, Inverse $=\mathrm{O}^{(\sim)}\left(\mathrm{m} \alpha^{\omega-1}\right)$
- until recently: Charpoly $=\mathrm{O}\left(\mathrm{m}^{2} \alpha^{\omega-1}\right)$

Challenge: Charpoly in sub-quadratic time in m ?

Outline

Introduction
Via Krylov methods
Keller-Gehrig's algorithm
An implicit Krylov method
Via polynomial matrix arithmetic
Overview of the approach
Complexity and spin-off results
Via Block-Wiedemann's algorithm
Block-Wiedamnn's algorithm
Structured matrices
Open problems

Via Krylov methods

Krylov Methods

Iterates of one vector

For a vector $\mathbf{v} \in \mathbb{K}^{\mathbf{m}}$, let

$$
\mathbf{K}=\left[\begin{array}{llll}
\mathbf{v} & \mathbf{A} \mathbf{v} & \ldots & \mathbf{A}^{\mathrm{d}-1} \mathbf{v}
\end{array}\right]
$$

If d is maximal s.t. K full-rank, then

and $P=X^{m}-p_{m-1} X^{m-1}-\cdots-p_{0}$ is the minpoly of v wrt. A.

Krylov Methods

Iterates of one vector

For a vector $\mathbf{v} \in \mathbb{K}^{\mathbf{m}}$, let

$$
\mathbf{K}=\left[\begin{array}{llll}
\mathbf{v} & \mathbf{A} \mathbf{v} & \ldots & \mathbf{A}^{\mathrm{d}-1} \mathbf{v}
\end{array}\right] .
$$

If d is maximal s.t. K full-rank and $d=m$, then

$$
\mathbf{K}^{-1} \mathbf{A K}=\underbrace{\left[\begin{array}{cccc}
0 & & & p_{0} \\
1 & & & p_{1} \\
& \ddots & & \vdots \\
& & 1 & p_{\mathfrak{m}-1}
\end{array}\right]}_{\mathbf{C}_{P}}
$$

and $P=X^{m}-p_{m-1} X^{m-1}-\cdots-p_{0}$ is the minpoly of v wrt. A.

$$
\text { then } \chi_{\mathrm{A}}=\mathrm{P}
$$

Krylov Methods

Iterates of multiple vectors

For a family of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell} \in \mathbb{K}^{m}$, let

$$
\mathbf{K}=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{A} \mathbf{v}_{1} & \ldots & \mathbf{A}^{\mathrm{d}_{1}-1} \mathbf{v}_{1} \\
\mathbf{v}_{2} & \ldots & \mathbf{A}^{\mathrm{d}_{2}-1} \mathbf{v}_{2} & \ldots \\
\mathbf{v}_{\ell} & \ldots & \mathbf{A}^{\mathrm{d}_{\ell}-1} \mathbf{v}_{\ell}
\end{array}\right]
$$

If \mathbf{K} is invertible then $\mathbf{K}^{-1} \mathbf{A K}=$

Krylov Methods

Iterates of multiple vectors

For a family of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell} \in \mathbb{K}^{m}$, let

$$
\mathbf{K}=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{A} \mathbf{v}_{1} & \ldots & \mathbf{A}^{\mathrm{d}_{1}-1} \mathbf{v}_{1} \\
\mathbf{v}_{2} & \ldots & \mathbf{A}^{\mathrm{d}_{2}-1} \mathbf{v}_{2} & \ldots \\
\mathbf{v}_{\ell} & \ldots & \mathbf{A}^{\mathrm{d}_{\ell}-1} \mathbf{v}_{\ell}
\end{array}\right]
$$

If \mathbf{K} is invertible and $\left(d_{1}, \ldots, d_{\ell}\right)$ is lexico. maximal then $\mathbf{K}^{-1} \mathbf{A K}=$

Krylov Methods

Iterates of multiple vectors

For a family of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell} \in \mathbb{K}^{m}$, let

$$
\mathbf{K}=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{A} \mathbf{v}_{1} & \ldots & \mathbf{A}^{\mathrm{d}_{1}-1} \mathbf{v}_{1} \\
\mathbf{v}_{2} & \ldots & \mathbf{A}^{\mathrm{d}_{2}-1} \mathbf{v}_{2} & \ldots \\
\mathbf{v}_{\ell} & \ldots & \mathbf{A}^{\mathrm{d}_{\ell}-1} \mathbf{v}_{\ell}
\end{array}\right]
$$

If \mathbf{K} is invertible and $\left(d_{1}, \ldots, d_{\ell}\right)$ is lexico. maximal then $\mathbf{K}^{-1} \mathbf{A K}=$

Then

$$
\chi_{\mathbf{A}}=\mathrm{P}_{1} \times \cdots \times \mathrm{P}_{\ell}
$$

where $C_{P_{i}}$ is the i-th diagonal block

Approach 1: computing the Krylov matrix

1. Compute $\mathbf{K}=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{A v}_{1} & \ldots & \mathbf{A}^{\mathrm{d}_{1}-1} \mathbf{v}_{1} \\ \mid \mathbf{v}_{2} & \ldots & \mathbf{A}^{\mathrm{d}_{2}-1} \mathbf{v}_{2} & \ldots \\ \mathbf{v}_{\ell} & \ldots & \mathbf{A}^{\mathrm{d}_{\ell}-1} \mathbf{v}_{\ell}\end{array}\right]$.
2. Compute $\mathrm{H}=\mathbf{K}^{-1} \mathbf{A K}$
$\rightarrow \mathrm{O}\left(\mathrm{m}^{\omega}\right)$

Approach 1: computing the Krylov matrix

1. Compute $\mathbf{K}=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{A} \mathbf{v}_{1} & \ldots & \mathbf{A}^{\mathrm{d}_{1}-1} \mathbf{v}_{1}\end{array} \mathbf{v}_{2} \quad \ldots \quad \mathbf{A}^{\mathrm{d}_{2}-1} \mathbf{v}_{2}|\ldots| \mathbf{v}_{\ell}\right.$ $\left.\mathbf{A}^{\mathrm{d}_{\ell}-1} \mathbf{v}_{\ell}\right]$.
$\rightarrow \mathrm{O}\left(\mathrm{m}^{\omega}\right)$

Iteratively

Using m Matrix-Vector products (+ Gaussian elimination)

Approach 1: computing the Krylov matrix

1. Compute $\mathbf{K}=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{A} \mathbf{v}_{1} & \ldots & \mathbf{A}^{\mathrm{d}_{1}-1} \mathbf{v}_{1} \\ \mathbf{v}_{2} & \ldots & \mathbf{A}^{\mathrm{d}_{2}-1} \mathbf{v}_{2} & \ldots \\ \mathbf{v}_{\ell} & \ldots & \mathbf{A}^{\mathrm{d}_{\ell}-1} \mathbf{v}_{\ell}\end{array}\right]$.
2. Compute $\mathbf{H}=\mathbf{K}^{-1} \mathbf{A K}$

$$
\rightarrow \mathrm{O}\left(\mathrm{~m}^{\omega}\right)
$$

Iteratively

Using m Matrix-Vector products (+ Gaussian elimination)
[Keller-Gehrig 85]'s iteration (adaptation of square \& multiply)

- Iteratively compute ($\log _{2} \mathrm{~m}$ iterations)
$\diamond \mathbf{K}_{0} \leftarrow\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{\ell}\end{array}\right]$
$\diamond \mathbf{K}_{1} \leftarrow\left[\begin{array}{ll}\mathbf{K}_{0} & \mathbf{A K}_{0}\end{array}\right]$
$\stackrel{\mathbf{K}_{\mathfrak{i}}}{ } \leftarrow\left[\begin{array}{ll}\mathbf{K}_{\mathfrak{i}-1} & \mathbf{A}^{\mathbf{2}^{\mathrm{i}}} \mathbf{K}_{\mathbf{i}-1}\end{array}\right]$
- Interleave Gaussian elimination to discard linearly dependent columns \rightarrow each $\mathbf{K}_{\mathbf{i}}$ has no more than m columns

Approach 1: computing the Krylov matrix

1. Compute $\mathbf{K}=\left[\begin{array}{ll}\mathbf{v}_{1} & \mathbf{A} \mathbf{v}_{1}\end{array}\right.$
$\mathbf{A}^{\mathrm{d}_{1}-1} \mathbf{v}_{1}\left|\mathbf{v}_{2} \quad \ldots \quad \mathbf{A}^{\mathrm{d}_{2}-1} \mathbf{v}_{2}\right| \ldots \mid \mathbf{v}_{\ell}$

$$
\begin{aligned}
& \left.\mathbf{A}^{\mathrm{d}_{\ell}-1} \mathbf{v}_{\ell}\right] \\
& \quad \rightarrow \mathrm{O}\left(\mathrm{~m}^{\omega}\right)
\end{aligned}
$$

Iteratively

Using m Matrix-Vector products (+ Gaussian elimination)

$$
\rightarrow \mathrm{O}\left(\mathrm{~m}^{3}\right)
$$

[Keller-Gehrig 85]'s iteration (adaptation of square \& multiply)

- Iteratively compute ($\log _{2} \mathrm{~m}$ iterations)
$\diamond \mathbf{K}_{0} \leftarrow\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{\ell}\end{array}\right]$
$\diamond \mathbf{K}_{1} \leftarrow\left[\begin{array}{ll}\mathbf{K}_{0} & \mathbf{A} \mathbf{K}_{0}\end{array}\right]$
\diamond
\diamond
$\diamond \mathbf{K}_{\mathfrak{i}} \leftarrow\left[\begin{array}{ll}\mathbf{K}_{\mathfrak{i}-1} & \mathbf{A}^{2^{i}} \mathbf{K}_{\mathfrak{i}-1}\end{array}\right]$
- Interleave Gaussian elimination to discard linearly dependent columns \rightarrow each $\mathbf{K}_{\mathbf{i}}$ has no more than m columns

Approach 2: avoid computing the Krylov matrix

k-shifted form:

- Any matrix is in 1 -shifted form

Approach 2: avoid computing the Krylov matrix

$k+1$-shifted form:

- Any matrix is in 1 -shifted form

Approach 2: avoid computing the Krylov matrix

- Compute iteratively from 1 -shifted form to d_{1}-shifted form

Approach 2: avoid computing the Krylov matrix

- Compute iteratively from 1 -shifted form to d_{1}-shifted form
- each diagonal block appears in the increasing degree

Approach 2: avoid computing the Krylov matrix

- Compute iteratively from 1 -shifted form to d_{1}-shifted form
- each diagonal block appears in the increasing degree
- until the shifted Hessenberg form is obtained:

Approach 2: avoid computing the Krylov matrix

- Compute iteratively from 1 -shifted form to d_{1}-shifted form
- each diagonal block appears in the increasing degree
- until the shifted Hessenberg form is obtained:

How to transform from k to $k+1$-shifted form ?

Approach 2: avoid computing the Krylov matrix

Approach 2: avoid computing the Krylov matrix

Approach 2: avoid computing the Krylov matrix

$$
\text { compute the } m \times(m+\lceil m / k\rceil) \text { matrix }
$$

- $\mathbf{K}=$ first linearly indep. cols of $\overline{\mathbf{K}}$

Approach 2: avoid computing the Krylov matrix

- $\mathbf{K}=$ first linearly indep. cols of $\overline{\mathbf{K}}$
- $\mathbf{A}_{k+1}=\mathbf{K}^{-1} \mathbf{A}_{\mathrm{k}} \mathbf{K} \quad$ in $\mathrm{O}\left(\mathrm{m}\left(\frac{\mathrm{m}}{\mathrm{k}}\right)^{\omega-1}\right)$

Approach 2: avoid computing the Krylov matrix

- $\mathbf{K}=$ first linearly indep. cols of $\overline{\mathbf{K}}$
- $\mathbf{A}_{k+1}=\mathbf{K}^{-1} \mathbf{A}_{\mathrm{k}} \mathbf{K} \quad$ in $\mathrm{O}\left(\mathrm{m}\left(\frac{\mathrm{m}}{\mathrm{k}}\right)^{\omega-1}\right)$
- Overall cost $\mathrm{T}(\mathrm{m})=\mathrm{O}\left(\mathrm{m}^{\omega} \sum_{\mathrm{k}=1}^{\mathrm{m}} \frac{1}{\mathrm{k}^{\omega-1}}\right)=\mathrm{O}\left(\mathrm{m}^{\omega}\right)$

Approach 2: avoid computing the Krylov matrix

- $\mathbf{K}=$ first linearly indep. cols of $\overline{\mathbf{K}}$
- $\mathbf{A}_{k+1}=\mathbf{K}^{-1} \mathbf{A}_{k} \mathbf{K} \quad$ in $\mathrm{O}\left(m\left(\frac{m}{k}\right)^{\omega-1}\right)$
- Overall cost $\mathrm{T}(\mathrm{m})=\mathrm{O}\left(\mathfrak{m}^{\omega} \sum_{k=1}^{m} \frac{1}{k^{\omega-1}}\right)=\mathrm{O}\left(\mathfrak{m}^{\omega}\right)$

w.h.p. $\mathbf{K}=$ first m cols of $\overline{\mathbf{K}}$ w.h.p \mathbf{A}_{k+1} is $(k+1)$-shifted Las-Vegas probabilistic

Example

Example

Example

$$
\underline{Y}
$$

Example

$$
\underline{y}
$$

Example

INO

Example

\pm

Example

\geq

Example

Example

Example

Example

Example

Example

Algorithms in practice

Charpoly over Z/131071Z on a Xeon Gold 6330

- implementations in the fflas-ffpack library ${ }^{1}$: finite field dense linear algebra

[^0]Via polynomial matrix arithmetic

Charpoly via $\mathbb{K}[x]$-linear algebra

Determinant of a matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ of degree d

$$
d=1
$$

Evaluation-Interpolation: [folklore]

$$
\mathrm{O}\left(\mathrm{~m}^{\omega+1}\right)
$$

at \sim md points: requires large enough field

Diagonalization (Smith form): [Storjohann 2003]

$$
\mathrm{O}\left(\mathfrak{m}^{\omega} \log (\mathfrak{m})^{2}\right)
$$

Las Vegas randomized + additional logs for small fields

Partial triangularization:

- Iterative [Mulders-Storjohann 2003]

$$
\mathrm{O}\left(\mathrm{~m}^{3}\right)
$$

via weak Popov form computations

- Divide and conquer, generic [Giorgi-Jeannerod-Villard 2003]

$$
\mathrm{O}\left(\mathrm{~m}^{\omega}\right)
$$ diagonal of Hermite form must be $1, \ldots, 1$, $\operatorname{det}(\mathbf{A})$

- Divide and conquer [Labahn-Neiger-Zhou 2017] logarithmic factors in m and d

Partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Labahn-Neiger-Zhou 2017]
Triangularization of $\mathrm{m} \times \mathrm{m}$ matrix \mathbf{A} using $\mathrm{m} / 2 \times \mathrm{m} / 2$ blocks

row basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$
kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

$$
\mathbf{K}_{1} \mathbf{A}_{2}+\mathbf{K}_{2} \mathbf{A}_{4}
$$

Property: $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$

Generic case without log factor

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Labahn-Neiger-Zhou 2017]
Triangularization of $m \times m$ matrix \mathbf{A} using $m / 2 \times \mathrm{m} / 2$ blocks

kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{2}\end{array}\right]$

$$
\mathbf{K}_{1} \mathbf{A}_{2}+\mathbf{K}_{2} \mathbf{A}_{4}
$$

Property: $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$

Generic input $\Rightarrow \operatorname{det}(\mathbf{A})$ without $\log (m)$
[Giorgi-Jeannerod-Villard 2003]
\mathbf{A}_{1} and \mathbf{A}_{3} are coprime $\Rightarrow \mathbf{R}=\mathbf{I}_{\mathfrak{m} / 2} \Rightarrow \operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{B})$

- Compute kernel $\left[\begin{array}{ll}\mathbf{K}_{1} & \mathbf{K}_{2}\end{array}\right]$; deduce B by MatMul
- Recursively, compute $\operatorname{det}(\mathbf{B})$, return it

A and $\left[\begin{array}{ll}\mathbf{K}_{1} & \mathbf{K}_{2}\end{array}\right]$ have degree $\mathrm{d} \Rightarrow \mathbf{B}$ has degree 2d: controlled total degree

General case with log factor

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Labahn-Neiger-Zhou 2017]
Triangularization of $\mathrm{m} \times \mathrm{m}$ matrix \mathbf{A} using $\mathrm{m} / 2 \times \mathrm{m} / 2$ blocks

kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

$$
\mathbf{K}_{1} \mathbf{A}_{2}+\mathbf{K}_{2} \mathbf{A}_{4}
$$

Property: $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$
Matrix degree not controlled: degree of \mathbf{B} up to $\mathrm{D}=\sum \operatorname{rdeg}(\mathbf{A}) \leqslant \mathrm{md}$ but controlled average row degree: at most $\frac{D}{m}$

General input $\Rightarrow \operatorname{det}(\mathbf{A})$ in $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{\mathrm{D}}{\mathrm{m}}\right)$
[Labahn-Neiger-Zhou 2017]

- Compute kernel $\left[\begin{array}{ll}\mathrm{K}_{1} & \mathrm{~K}_{2}\end{array}\right]$; deduce B by MatMul
$\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}^{\prime}\left(\frac{\mathrm{D}}{\mathrm{m}}\right)\right)$
- Compute row basis R
$O^{\sim}\left(m^{\omega} \frac{D}{m}\right)$ with $\log (m)$
- Recursively, compute $\operatorname{det}(\mathbf{R})$ and $\operatorname{det}(\mathbf{B})$, return $\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$

Be lazy: if hard to compute, don't compute

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, Labahn-Neiger-Zhou 2017]
Triangularization of $\mathrm{m} \times \mathrm{m}$ matrix \mathbf{A} using $\mathrm{m} / 2 \times \mathrm{m} / 2$ blocks not computed

$\left.\begin{array}{c}* \\ \mathbf{K}_{2}\end{array}\right]\left[\begin{array}{ll}\mathbf{A}_{1} & \mathbf{A}_{2} \\ \mathbf{A}_{3} & \mathbf{A}_{4}\end{array}\right]=\left[\begin{array}{cc}\mathbf{R} & * \\ \mathbf{0} & \mathbf{B}\end{array}\right]$ row basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$
kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

$$
\mathbf{K}_{1} \mathbf{A}_{2}+\mathbf{K}_{2} \mathbf{A}_{4}
$$

Property: $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$

Obstacle: removing log factors in row basis computation
\Rightarrow solution: remove row basis computation

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{I}_{\mathrm{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathbf{B}
\end{array}\right]} \\
& \text { Property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

Further obstacles (brought by laziness)

$$
\begin{aligned}
& \left.\qquad \begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathrm{~B}
\end{array}\right] \\
& \text { Property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

${ }^{6}$ no $\log (m)$ in the computation of $\mathbf{A}_{\mathbf{1}}, \mathbf{B}, \mathbf{K}_{2}$
-. requires nonsingular \mathbf{A}_{1}, otherwise $\operatorname{det}\left(\mathbf{K}_{2}\right)=0$

- 3 recursive calls in matrix size $m / 2$ is $\boldsymbol{\omega}$, but requires $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$ otherwise degree control is too weak.

Further obstacles (brought by laziness)

$$
\begin{aligned}
& \left.\qquad \begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathrm{~B}
\end{array}\right] \\
& \text { Property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

1) no $\log (m)$ in the computation of $\mathbf{A}_{1}, \mathbf{B}, \mathbf{K}_{2}$
¢ $\boldsymbol{\text { requires nonsingular }} \mathbf{A}_{1}$, otherwise $\operatorname{det}\left(\mathbf{K}_{2}\right)=0$
9. 3 recursive calls in matrix size $m / 2$ is n, but requires $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$ otherwise degree control is too weak.
(this implies $\sum \operatorname{rdeg}\left(\mathrm{K}_{2}\right) \leqslant \mathrm{D} / 2$)
Solution: require A in weak Popov form (the characteristic matrix $\mathbf{A}=x \mathbf{I}_{\mathrm{m}}-\mathrm{M}$ is in Popov form)
16 implies \mathbf{A}_{1} nonsingular and $\sum \mathrm{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$ up to easy transformations
both \mathbf{A}_{1} and \mathbf{B} are also in weak Popov form \Rightarrow suitable for recursive calls
甲 K_{2} is in "shifted reduced" form... find weak Popov \mathbf{P} with same determinant

Complexity

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

where: $M(d)=\operatorname{PolMul}(d)=O\left(d^{\omega-1-\varepsilon}\right) \quad M^{\prime}(d)=G C D(d) \in O(M(d) \log (d)) \quad \frac{D}{m}=\frac{\text { degdet }}{m}=$ avg row degree

Complexity

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

where: $M(d)=\operatorname{PoIMul}(d)=O\left(d^{\omega-1-\varepsilon}\right) \quad M^{\prime}(d)=G C D(d) \in O(M(d) \log (d)) \quad \frac{D}{m}=\frac{\text { degdet }}{m}=$ avg row degree

Complexity

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

where: $M(d)=\operatorname{PoIMul}(d)=O\left(d^{\omega-1-\varepsilon}\right) \quad M^{\prime}(d)=G C D(d) \in O(M(d) \log (d)) \quad \frac{D}{m}=\frac{\text { degdet }}{m}=$ avg row degree

Complexity

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

where: $M(d)=\operatorname{PoIMul}(d)=O\left(d^{\omega-1-\varepsilon}\right) \quad M_{1}^{\prime}(d)=G C D(d) \in O(M(d) \log (d)) \quad \frac{D}{m}=\frac{\text { degdet }}{m}=$ avg row degree

Complexity

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

where: $M(d)=\operatorname{PoIMul}(d)=O\left(d^{\omega-1-\varepsilon}\right) \quad M_{1}^{\prime}(d)=G C D(d) \in O(M(d) \log (d)) \quad \frac{D}{m}=\frac{\text { degdet }}{m}=$ avg row degree

Complexity

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

Complexity

$$
\mathcal{C}(m, D) \leqslant 2 C\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right) \leqslant O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

A deterministic reduction to Matrix multiplication

Results [Neiger-P. 21]

- CharPoly $=\Theta($ MatMul $)=\Theta\left(\mathrm{n}^{\omega}\right)$ deterministically
- Determinant of reduced polynomial matrices in $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}^{\prime}\left(\frac{D}{m}\right)\right)$

A deterministic reduction to Matrix multiplication

Results [Neiger-P. 21]

- CharPoly $=\Theta($ MatMul $)=\Theta\left(n^{\omega}\right)$ deterministically
- Determinant of reduced polynomial matrices in $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}^{\prime}\left(\frac{\mathrm{D}}{\mathrm{m}}\right)\right)$

- Prototype incomplete implementation (does not deal with the non-generic cases)

Spin-off result

Lemma

A right kernel basis of $\mathbf{A} \in \mathbb{K}[x]^{m \times O(m)}$ with constant degree can be computed in reduced form in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ field operations.

Spin-off result

Lemma

A right kernel basis of $\mathbf{A} \in \mathbb{K}[x]^{m \times O(m)}$ with constant degree can be computed in reduced form in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ field operations.

Corollary

The Krylov matrix $\mathbf{K}_{\mathbf{A}, \mathbf{v}}=\left[\begin{array}{llll}\mathbf{v} & \mathbf{A v} & \ldots & \mathbf{A}^{m-1} \mathbf{v}\end{array}\right]$ with $\mathbf{A} \in \mathbb{K}^{m \times m}$ can be computed in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$.

Spin-off result

Lemma

A right kernel basis of $\mathbf{A} \in \mathbb{K}[x]^{m \times O(m)}$ with constant degree can be computed in reduced form in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ field operations.

Corollary

The Krylov matrix $\mathbf{K}_{\mathbf{A}, \mathbf{v}}=\left[\begin{array}{llll}\mathbf{v} & \mathbf{A v} & \ldots & \mathbf{A}^{m-1} \mathbf{v}\end{array}\right]$ with $\mathbf{A} \in \mathbb{K}^{m \times m}$ can be computed in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$.

Sketch of proof.

$$
\left[\begin{array}{l|l}
\mathbf{I}_{\mathrm{m}}-x \mathbf{A} & -\mathbf{v}
\end{array}\right]\left[\begin{array}{l}
\mathbf{s} \\
\mathrm{t}
\end{array}\right]=0
$$

Hence

$$
\mathbf{s} / \mathrm{t}=\left(\mathbf{I}_{\mathfrak{m}}-x \mathbf{A}\right)^{-1} \mathbf{v}=\sum_{i=0}^{\infty} x^{\mathrm{k}} \mathbf{A}^{\mathrm{k}} \mathbf{v}
$$

A truncated series expansion of s / t at order m produces the Krylov iterates.

Via Block-Wiedemann's algorithm

Block-Wiedemann approach

$$
\operatorname{det}\left(\lambda \mathbf{I}_{\mathfrak{m}}-\mathbf{A}\right)=1 / X^{\mathfrak{m}} \operatorname{det}\left(\mathbf{I}_{\mathfrak{m}}-X \mathbf{A}\right) \text { for } X=1 / \lambda
$$

$$
\begin{aligned}
& \left(\mathbf{I}_{\mathbf{m}}-X \mathbf{A}\right)^{-1} \\
& =\sum_{i=0}^{\infty} X^{i} \mathbf{A}^{i}
\end{aligned}
$$

Block-Wiedemann approach

$$
\operatorname{det}\left(\lambda \mathbf{I}_{\mathfrak{m}}-\mathbf{A}\right)=1 / X^{m} \operatorname{det}\left(\mathbf{I}_{\mathfrak{m}}-X \mathbf{A}\right) \text { for } X=1 / \lambda
$$

1. Sample unif. $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{m \times k}$
2. For all $\mathfrak{i} \in\{0, \ldots, 2 m / k\}$ Compute $\mathbf{U}^{\top} \mathbf{A}^{i} \mathbf{V}$

Block-Wiedemann approach

$$
\operatorname{det}\left(\lambda \mathbf{I}_{\mathfrak{m}}-\mathbf{A}\right)=1 / X^{m} \operatorname{det}\left(\mathbf{I}_{\mathfrak{m}}-X \mathbf{A}\right) \text { for } X=1 / \lambda
$$

1. Sample unif. $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{m \times k}$
2. For all $i \in\{0, \ldots, 2 m / k\}$ Compute $\mathbf{U}^{\top} \mathbf{A}^{i} \mathbf{V}$
3. Reconstruct a matrix fraction $\mathbf{P}(X) / \mathbf{Q}(X)=\mathbf{U}^{\top}\left(\mathbf{I}_{m}-X \mathbf{A}\right)^{-1} \mathbf{V}$

.

Block-Wiedemann approach

$$
\operatorname{det}\left(\lambda \mathbf{I}_{\mathfrak{m}}-\mathbf{A}\right)=1 / X^{m} \operatorname{det}\left(\mathbf{I}_{\mathfrak{m}}-X \mathbf{A}\right) \text { for } X=1 / \lambda
$$

1. Sample unif. $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{\mathbf{m} \times k}$
2. For all $i \in\{0, \ldots, 2 \mathrm{~m} / \mathrm{k}\}$ Compute $\mathbf{U}^{\boldsymbol{T}} \mathbf{A}^{i} \mathbf{V}$
3. Reconstruct a matrix fraction $\mathbf{P}(X) / \mathbf{Q}(X)=\mathbf{U}^{\top}\left(\mathbf{I}_{m}-X \mathbf{A}\right)^{-1} \mathbf{V}$
4. Return $\operatorname{det} \mathbf{Q}(X)\left(=\operatorname{det}\left(\mathbf{I}_{m}-X \mathbf{A}\right)\right.$ w.h.p. $)$

Block-Wiedemann with dense matrices and without divisions

A Baby Step Giant Step approach: [Preparata-Sarwate 78] [Kaltofen 92] [Kaltofen-Villard 05]

\times	\mathbf{V}	$\mathbf{B V}$	\ldots	$\mathbf{B}^{s-1} \mathbf{V}$
\mathbf{U}^{T}	$\mathbf{U}^{\mathrm{T}} \mathbf{V}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{r}} \mathbf{V}$	\ldots	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{rs-r}} \mathbf{V}$
$\mathbf{U}^{\mathrm{T}} \mathbf{A}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A V}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{r+1} \mathbf{V}$	\ldots	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{rs-r}+1} \mathbf{V}$
\vdots	\vdots	\vdots	\ddots	\vdots
$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{r-1}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{r}-1} \mathbf{V}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{2 r-1} \mathbf{V}$	\ldots	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{m}-1} \mathbf{V}$

Block-Wiedemann with dense matrices and without divisions

A Baby Step Giant Step approach: [Preparata-Sarwate 78] [Kaltofen 92] [Kaltofen-Villard 05]

\times	\mathbf{V}	$\mathbf{B V}$	\ldots	$\mathbf{B}^{s-1} \mathbf{V}$
\mathbf{U}^{T}	$\mathbf{U}^{\mathrm{T}} \mathbf{V}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{r}} \mathbf{V}$	\ldots	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{rs-r}} \mathbf{V}$
$\mathbf{U}^{\mathrm{T}} \mathbf{A}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A V}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{r+1} \mathbf{V}$	\ldots	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{rs-r}+1} \mathbf{V}$
\vdots	\vdots	\vdots	\ddots	\vdots
$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{r-1}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{r}-1} \mathbf{V}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{2 r-1} \mathbf{V}$	\ldots	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{m}-1} \mathbf{V}$

Combined with avoidance of divisions ([Strassen 73], [Kaltofen 92]) yields

- Division free algorithms for the characteristic polynomial [Kaltofen-Villard 05]
\diamond over \mathbb{Z} in $\mathrm{O}^{\sim}\left(\mathrm{m}^{2.6973} \log \|\mathcal{A}\|\right)$ bit operations probabilistic
\diamond over any commutative ring in $\mathrm{O}\left(\mathrm{m}^{2.6973}\right)$ ring operations deterministic

Block-Wiedemann with dense matrices and without divisions

A Baby Step Giant Step approach: [Preparata-Sarwate 78] [Kaltofen 92] [Kaltofen-Villard 05]

\times	\mathbf{V}	$\mathbf{B V}$	\ldots	$\mathbf{B}^{s-1} \mathbf{V}$
\mathbf{U}^{T}	$\mathbf{U}^{\mathrm{T}} \mathbf{V}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{r}} \mathbf{V}$	\ldots	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{rs-r}} \mathbf{V}$
$\mathbf{U}^{\mathrm{T}} \mathbf{A}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A V}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{r+1} \mathbf{V}$	\ldots	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{rs-r}+1} \mathbf{V}$
\vdots	\vdots	\vdots	\ddots	\vdots
$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{r-1}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{r}-1} \mathbf{V}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{2 r-1} \mathbf{V}$	\ldots	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{\mathrm{m}-1} \mathbf{V}$

Combined with avoidance of divisions ([Strassen 73], [Kaltofen 92]) yields

- Division free algorithms for the characteristic polynomial [Kaltofen-Villard 05]
\diamond over \mathbb{Z} in $\mathrm{O}^{\sim}\left(\mathrm{m}^{2.6973} \log \|A\|\right)$ bit operations probabilistic
\diamond over any commutative ring in $\mathrm{O}\left(\mathrm{m}^{2.6973}\right)$ ring operations deterministic

Open Problems:

- fill the gap with $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \log \|A\|\right)$ bit complexity over \mathbb{Z} (reached for Det, LinSys, Smith)
- fill the gap with $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ division free

Matrices with rank displacement structures

Toeplitz matrix
$\left[\begin{array}{llll}{\left[\begin{array}{llll}d & e & f & g \\ c & d & e & f \\ b & c & d & e \\ a & b & c & d\end{array}\right]} \\ & T & \end{array}\right.$

Matrices with rank displacement structures

Toeplitz matrix

Matrices with rank displacement structures

Toeplitz matrix

Matrices with rank displacement structures

Toeplitz matrix

Generalizations

- Toeplitz-like : s.t. $\Delta_{Z, Z}(\mathbf{T})=\mathbf{T}-\mathbf{Z T Z}$ has rank $\alpha\left(=\mathbf{G H}^{\top}\right.$ with $\left.\mathbf{G}, \mathbf{H} \in \mathbb{K}^{\mathfrak{m} \times \alpha}\right)$.
- Hankel-like, Vandemonde-like, Cauchy-like, etc : similarly with other displ. operators $\Delta_{X, Y}, \nabla_{X, Y}$. $\operatorname{RDP}_{\alpha}$: matrices with a rank displacement structure of order α.

Matrices with rank displacement structures

Toeplitz matrix

Generalizations

- Toeplitz-like : s.t. $\Delta_{Z, Z}(\mathbf{T})=\mathbf{T}-\mathbf{Z T Z}$ has rank $\alpha\left(=\mathbf{G H}^{\top}\right.$ with $\left.\mathbf{G}, \mathbf{H} \in \mathbb{K}^{\mathrm{m} \times \alpha}\right)$.
- Hankel-like, Vandemonde-like, Cauchy-like, etc : similarly with other displ. operators $\Delta_{X, Y}, \nabla_{X, Y}$. $\operatorname{RDP}_{\alpha}$: matrices with a rank displacement structure of order α.

Property

A Toeplitz like matrix decomposes as $\mathbf{T}=\sum_{i=1}^{\alpha} \mathbf{L}_{i} \mathbf{U}_{\mathfrak{i}}$ where \mathbf{L}_{i} are lower triangular and $\mathbf{U}_{\mathfrak{i}}$ upper triangular Toeplitz matrices.

Computing with matrices with rank displacement structure

Multiplication

- Toeplitz \times Vector: (via polynomial multiplication)
- RDP $_{\alpha} \times(m \times \alpha)$ block-vector: [Bostan-Jeannerod-Mouilleron-Schost 07,17]
$\mathrm{O}^{\sim}\left(\mathrm{m} \alpha^{\omega-1}\right)$

Computing with matrices with rank displacement structure

Multiplication

- Toeplitz \times Vector: (via polynomial multiplication)

$$
\begin{array}{r}
\mathrm{O}^{\sim}(\mathrm{m}) \\
\mathrm{O}^{\sim}\left(\mathrm{m} \alpha^{\omega-1}\right)
\end{array}
$$

Linear system

- Toeplitz ${ }^{-1} \times$ Vector: (via polynomial multiplication) [Pan01]

$$
\begin{array}{r}
\mathrm{O}^{\sim}(\mathrm{m}) \\
\mathrm{O}^{\sim}\left(\mathrm{m} \alpha^{\omega-1}\right)
\end{array}
$$

- $\mathrm{RDP}_{\alpha}{ }^{-1} \times(\mathrm{m} \times \alpha)$ block-vector: [Bostan Et al. 17]
- Same costs for Det, Inverse [Pan 01, Bostan-Jeannerod-Mouilleron-Schost 17]

Computing with matrices with rank displacement structure

Multiplication

- Toeplitz \times Vector: (via polynomial multiplication)

$$
\begin{array}{r}
\mathrm{O}^{\sim}(\mathrm{m}) \\
\mathrm{O}^{\sim}\left(\mathrm{m} \alpha^{\omega-1}\right)
\end{array}
$$

- $\mathrm{RDP}_{\alpha} \times(\mathrm{m} \times \alpha)$ block-vector: [Bostan-Jeannerod-Mouilleron-Schost 07,17]

Linear system

- Toeplitz ${ }^{-1} \times$ Vector: (via polynomial multiplication) [Pan01]

$$
\begin{array}{r}
\mathrm{O}^{\sim}(\mathrm{m}) \\
\mathrm{O}^{\sim}\left(\mathrm{m} \alpha^{\omega-1}\right)
\end{array}
$$

- $\mathrm{RDP}_{\alpha}{ }^{-1} \times(\mathrm{m} \times \alpha)$ block-vector: [Bostan Et al. 17]
- Same costs for Det, Inverse [Pan 01, Bostan-Jeannerod-Mouilleron-Schost 17]

Characteristic polynomial

- Charpoly $\left(\mathrm{RDP}_{\alpha}\right)$ by Evalutation-Interpolation: $m \times \operatorname{Det}$
$\mathrm{O}^{\sim}\left(\mathrm{m}^{2} \alpha^{\omega-1}\right)$

Computing with matrices with rank displacement structure

Multiplication

- Toeplitz \times Vector: (via polynomial multiplication)

$$
\begin{array}{r}
\mathrm{O}^{\sim}(\mathrm{m}) \\
\mathrm{O}^{\sim}\left(\mathrm{m} \alpha^{\omega-1}\right)
\end{array}
$$

- $\mathrm{RDP}_{\alpha} \times(\mathrm{m} \times \alpha)$ block-vector: [Bostan-Jeannerod-Mouilleron-Schost 07,17]

Linear system

- Toeplitz ${ }^{-1} \times$ Vector: (via polynomial multiplication) [Pan01]

$$
\begin{array}{r}
\mathrm{O}^{\sim}(\mathrm{m}) \\
\mathrm{O}^{\sim}\left(\mathrm{m} \alpha^{\omega-1}\right)
\end{array}
$$

- $\mathrm{RDP}_{\alpha}{ }^{-1} \times(\mathrm{m} \times \alpha)$ block-vector: [Bostan Et al. 17]
- Same costs for Det, Inverse [Pan 01, Bostan-Jeannerod-Mouilleron-Schost 17]

Characteristic polynomial

- Charpoly $\left(\right.$ RDP $\left._{\alpha}\right)$ by Evalutation-Interpolation: $m \times \operatorname{Det}$
$\mathrm{O}^{\sim}\left(\mathrm{m}^{2} \alpha^{\omega-1}\right)$
- Minpoly(Toeplitz-/Hankel-like) probabilistic [Karpman-P.-Signargout-Villard 21]
$\mathrm{O}^{\sim}\left(\mathrm{m}^{1.86} \alpha^{0.53}\right)$
- Charpoly(Toeplitz-/Hankel-like) generic [Karpman-P.-Signargout-Villard 21]
$\mathrm{O}^{\sim}\left(\mathrm{m}^{1.58} \alpha^{0.53}\right)$

Computing with matrices with rank displacement structure

Multiplication

- Toeplitz \times Vector: (via polynomial multiplication)

$$
\begin{array}{r}
\mathrm{O}^{\sim}(\mathrm{m}) \\
\mathrm{O}^{\sim}\left(\mathrm{m} \alpha^{\omega-1}\right)
\end{array}
$$

- $\mathrm{RDP}_{\alpha} \times(\mathrm{m} \times \alpha)$ block-vector: [Bostan-Jeannerod-Mouilleron-Schost 07,17]

Linear system

- Toeplitz ${ }^{-1} \times$ Vector: (via polynomial multiplication) [Pan01]

$$
\begin{array}{r}
\mathrm{O}^{\sim}(\mathrm{m}) \\
\mathrm{O}^{\sim}\left(\mathrm{m} \alpha^{\omega-1}\right)
\end{array}
$$

- $\mathrm{RDP}_{\alpha}{ }^{-1} \times(\mathrm{m} \times \alpha)$ block-vector: [Bostan Et al. 17]
- Same costs for Det, Inverse [Pan 01, Bostan-Jeannerod-Mouilleron-Schost 17]

Characteristic polynomial

- Charpoly $\left(\right.$ RDP $\left._{\alpha}\right)$ by Evalutation-Interpolation: $m \times \operatorname{Det}$
$\mathrm{O}^{\sim}\left(\mathrm{m}^{2} \alpha^{\omega-1}\right)$
- Minpoly(Toeplitz-/Hankel-like) probabilistic [Karpman-P.-Signargout-Villard 21]
$\mathrm{O}^{\sim}\left(\mathrm{m}^{1.86} \alpha^{0.53}\right)$
- Charpoly(Toeplitz-/Hankel-like) generic [Karpman-P.-Signargout-Villard 21]
$\mathrm{O}^{\sim}\left(\mathrm{m}^{1.58} \alpha^{0.53}\right)$

Block Wiedemann algorithm with rank displacement structure

Explicit iteration

[Karpman-P.-Signargout-Villard 21]

- Dense projections: $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{\mathrm{m} \times \mathrm{k}}$

\times	V	BV	$\mathrm{B}^{\text {s-1 }} \mathrm{V}$
\mathbf{U}^{\top}	$\mathbf{U}^{\text {T }} \mathbf{V}$	$\mathbf{U}^{\top} \mathbf{A}^{\mathrm{r}} \mathbf{V}$	$\mathbf{U}^{\top} \mathbf{A}^{\text {rs }{ }^{-r} \mathbf{V}}$
$\mathbf{U}^{\top} \mathbf{A}$	$\mathbf{U}^{\mathbf{T}} \mathbf{A V}$	$\mathbf{U}^{\mathbf{T}} \mathbf{A}^{\mathrm{r}+1} \mathbf{V}$	$\mathbf{U}^{\top} \mathbf{A}^{\text {r }}{ }^{\mathbf{r}+\mathrm{r}+1} \mathbf{V}$
:	:	:	.
$\mathbf{U}^{\top} \mathbf{A}^{\mathbf{r}-1}$	$\mathbf{U}^{\top} \mathbf{A}^{\mathbf{r}-1} \mathbf{V}$	$\mathbf{U}^{\top} \mathbf{A}^{2 r-1} \mathbf{V}$	$\mathbf{U}^{\top} \mathbf{A}^{m-1} \mathbf{V}$

Block Wiedemann algorithm with rank displacement structure

Explicit iteration

[Karpman-P.-Signargout-Villard 21]

- Dense projections: $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{\mathrm{m} \times \mathrm{k}}$

\times	V	BV	$\mathrm{B}^{\text {s }-1} \mathrm{~V}$
\mathbf{U}^{\top}	$\mathbf{U}^{\text {T }}$ V	$\mathbf{U}^{\mathbf{T}} \mathbf{A}^{\mathrm{r}} \mathbf{V}$	$\mathbf{U}^{\top} \mathbf{A}^{\text {rs-r}}{ }^{\text {r }} \mathbf{V}$
$\mathbf{U}^{\top} \mathbf{A}$	$\mathbf{U}^{\mathbf{T}} \mathbf{A V}$	$\mathbf{U}^{\mathbf{T}} \mathbf{A}^{\mathrm{r}+1} \mathbf{V}$	$\mathbf{U}^{\top} \mathbf{A}^{r s-r+1} \mathbf{V}$
$\mathbf{U}^{\top} \mathbf{A}^{\mathbf{r}-1}$	$\mathbf{U}^{\top} \mathbf{A}^{\mathbf{r}-1} \mathbf{V}$	$\mathbf{U}^{\top} \mathbf{A}^{2 r-1} \mathbf{V}$	$\mathbf{U}^{\top} \mathbf{A}^{\mathrm{m}-1} \mathbf{V}$

- Toeplitz-/Hankel-like: inflation of the disp. rank. $\alpha\left(\mathbf{A}^{r}\right)=r \times \alpha(\mathbf{A})$
$\rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{1.86} \alpha^{0.53}\right)$

Block Wiedemann algorithm with rank displacement structure

Explicit iteration

[Karpman-P.-Signargout-Villard 21]

- Dense projections: $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{\mathrm{m} \times \mathrm{k}}$

\times	\mathbf{V}	$\mathbf{B V}$	\ldots	$\mathbf{B}^{s-1} \mathbf{V}$
\mathbf{U}^{\top}	$\mathbf{U}^{\mathrm{T}} \mathbf{V}$	$\mathbf{U}^{\top} \mathbf{A}^{r} \mathbf{V}$	\cdots	$\mathbf{U}^{\top} \mathbf{A}^{r s-r} \mathbf{V}$
$\mathbf{U}^{\top} \mathbf{A}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A V}$	$\mathbf{U}^{\mathrm{T}} \mathbf{A}^{r+1} \mathbf{V}$	\ldots	$\mathbf{U}^{\top} \mathbf{A}^{r s-r+1} \mathbf{V}$
\vdots	\vdots	\vdots	\ddots	\vdots
$\mathbf{U}^{\top} \mathbf{A}^{r-1}$	$\mathbf{U}^{\top} \mathbf{A}^{r-1} \mathbf{V}$	$\mathbf{U}^{\top} \mathbf{A}^{2 r-1} \mathbf{V}$	\ldots	$\mathbf{U}^{\top} \mathbf{A}^{\mathrm{m}-1} \mathbf{V}$

- Toeplitz-/Hankel-like: inflation of the disp. rank. $\alpha\left(\mathbf{A}^{r}\right)=r \times \alpha(\mathbf{A})$
$\rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{1.86} \alpha^{0.53}\right)$
- Considering structured \mathbf{U}, \mathbf{V} does not help

Block Wiedemann algorithm with rank displacement structure

Explicit iteration

[Karpman-P.-Signargout-Villard 21]

- Dense projections: $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{\mathfrak{m} \times k}$

\times	V	BV	\ldots	$\mathrm{B}^{\text {s }-1} \mathrm{~V}$
\mathbf{U}^{\top}	$\mathbf{U}^{\text {T }} \mathrm{V}$	$\mathbf{U}^{\mathbf{T}} \mathbf{A}^{\mathbf{r}} \mathbf{V}$		$\mathbf{U}^{\top} \mathbf{A}^{\text {r }}{ }^{-r} \mathbf{V} \mathbf{V}$
$\mathbf{U}^{\top} \mathbf{A}$	$\mathbf{U}^{\mathbf{T}} \mathbf{A V}$	$\mathbf{U}^{\mathbf{T}} \mathbf{A}^{\mathrm{r}+1} \mathbf{V}$		$\mathbf{U}^{\top} \mathbf{A}^{r s-r+1} \mathbf{V}$
			\because	
$\mathbf{U}^{\top} \mathbf{A}^{\mathbf{r}-1}$	$\mathbf{U}^{\top} \mathbf{A}^{r-1} \mathbf{V}$	$\mathbf{U}^{\top} \mathbf{A}^{2 r-1} \mathbf{V}$	\ldots	$\mathbf{U}^{\top} \mathbf{A}^{\mathrm{m}-1} \mathbf{V}$

- Toeplitz-/Hankel-like: inflation of the disp. rank. $\alpha\left(\mathbf{A}^{r}\right)=r \times \alpha(\mathbf{A})$
$\rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{1.86} \alpha^{0.53}\right)$
- Considering structured \mathbf{U}, \mathbf{V} does not help
- Rk: in [Neiger-Salvy-Schost-Villard 23] Modular composition uses Charpoly(ModPolyMult) disp. rank remains stable. $\alpha\left(\mathbf{A}^{r}\right)=\alpha(\mathbf{A})$

$$
\rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{1.43}\right)
$$

Block Wiedemann algorithm with rank displacement structure

Implicit iteration using structured inverse
[Karpman-P.-Signargout-Villard 21] based on [Villard 18]

1. Structured inversion modulo $X^{2 m / k}$:

$$
\left(\mathbf{I}_{\mathfrak{m}}-X \mathbf{A}\right)^{-1}=\sum_{i=1}^{\alpha} \tilde{\mathbf{L}}_{\mathrm{i}} \tilde{\mathbf{U}}_{\mathfrak{i}} \bmod X^{2 m / k}
$$

Block Wiedemann algorithm with rank displacement structure

Implicit iteration using structured inverse

[Karpman-P.-Signargout-Villard 21] based on [Villard 18]

1. Structured inversion modulo $X^{2 m / k}$: $\left(\mathbf{I}_{\mathfrak{m}}-X \mathbf{A}\right)^{-1}=\sum_{i=1}^{\alpha} \tilde{\mathbf{L}}_{i} \tilde{\mathbf{U}}_{i} \bmod X^{2 m / k}$

Block Wiedemann algorithm with rank displacement structure

Implicit iteration using structured inverse

- Structured projections: $\mathbf{U}=\mathbf{V}=\left[\begin{array}{c}\mathbf{I}_{\mathrm{k}} \\ \mathbf{0}\end{array}\right] \in \mathbb{K}^{\mathbf{m} \times \mathrm{k}}$

[Karpman-P.-Signargout-Villard 21] based on [Villard 18]

1. Structured inversion modulo $X^{2 m / k}$: $\left(\mathbf{I}_{\mathrm{m}}-X \mathbf{A}\right)^{-1}=\sum_{i=1}^{\alpha} \tilde{\mathbf{L}}_{\mathrm{i}} \tilde{\mathbf{U}}_{\mathrm{i}} \bmod X^{2 m / k}$
2. Crop : $\left[\begin{array}{ll}\mathbf{I}_{k} & \mathbf{0}\end{array}\right] \sum \tilde{\mathbf{L}}_{\mathrm{i}} \tilde{\mathbf{U}}_{\mathfrak{i}}\left[\begin{array}{c}\mathbf{I}_{\mathrm{k}} \\ \mathbf{0}\end{array}\right]=$ $\sum_{i=1}^{\alpha}\left(\tilde{\mathbf{L}}_{i}\right)_{1 . . k, 1 . . k}\left(\tilde{\mathbf{U}}_{i}\right)_{1 . . k, 1 . . k}$

Block Wiedemann algorithm with rank displacement structure

Implicit iteration using structured inverse

- Structured projections: $\mathbf{U}=\mathbf{V}=\left[\begin{array}{c}\mathbf{I}_{k} \\ \mathbf{0}\end{array}\right] \in \mathbb{K}^{\mathbf{m} \times \mathrm{k}}$

[Karpman-P.-Signargout-Villard 21] based on [Villard 18]

1. Structured inversion modulo $X^{2 m / k}$:

$$
\left(\mathbf{I}_{\mathfrak{m}}-X \mathbf{A}\right)^{-1}=\sum_{i=1}^{\alpha} \tilde{\mathbf{L}}_{i} \tilde{\mathbf{U}}_{\mathfrak{i}} \bmod X^{2 m / k}
$$

2. Crop : $\left[\begin{array}{ll}\mathbf{I}_{k} & \mathbf{0}\end{array}\right] \sum \tilde{\mathbf{L}}_{\mathrm{i}} \tilde{\mathbf{U}}_{\mathfrak{i}}\left[\begin{array}{c}\mathbf{I}_{\mathrm{k}} \\ \mathbf{0}\end{array}\right]=$

$$
\sum_{i=1}^{\alpha}\left(\tilde{\mathbf{L}}_{i}\right)_{1 . . k, 1 . . k}\left(\tilde{\mathbf{U}}_{i}\right)_{1 . . k, 1 . . k}
$$

Block Wiedemann algorithm with rank displacement structure

Implicit iteration using structured inverse

- Structured projections: $\mathbf{U}=\mathbf{V}=\left[\begin{array}{c}\mathbf{I}_{\mathrm{k}} \\ \mathbf{0}\end{array}\right] \in \mathbb{K}^{\mathbf{m} \times \mathrm{k}}$

1. Structured inversion modulo $X^{2 m / k}$:

$$
\left(\mathbf{I}_{\mathfrak{m}}-X \mathbf{A}\right)^{-1}=\sum_{i=1}^{\alpha} \tilde{\mathbf{L}}_{i} \tilde{\mathbf{U}}_{i} \bmod X^{2 m / k}
$$

2. Crop : $\left[\begin{array}{ll}\mathbf{I}_{k} & \mathbf{0}\end{array}\right] \sum \tilde{\mathbf{L}}_{\mathbf{i}} \tilde{\mathbf{U}}_{\mathfrak{i}}\left[\begin{array}{c}\mathbf{I}_{k} \\ \mathbf{0}\end{array}\right]=$ $\sum_{i=1}^{\alpha}\left(\tilde{\mathbf{L}}_{i}\right)_{1 . . k, 1 . . k}\left(\tilde{\mathbf{U}}_{i}\right)_{1 . . k, 1 . . k}$
3. Expand to dense

Block Wiedemann algorithm with rank displacement structure

Implicit iteration using structured inverse

- Structured projections: $\mathbf{U}=\mathbf{V}=\left[\begin{array}{c}\mathbf{I}_{\mathrm{k}} \\ \mathbf{0}\end{array}\right] \in \mathbb{K}^{\mathbf{m} \times \mathrm{k}}$
[Karpman-P.-Signargout-Villard 21] based on [Villard 18]

1. Structured inversion modulo $X^{2 m / k}$:

$$
\left(\mathbf{I}_{\mathfrak{m}}-X \mathbf{A}\right)^{-1}=\sum_{i=1}^{\alpha} \tilde{\mathbf{L}}_{i} \tilde{\mathbf{U}}_{\mathfrak{i}} \bmod X^{2 m / k}
$$

2. Crop : $\left[\begin{array}{ll}\mathbf{I}_{k} & \mathbf{0}\end{array}\right] \sum \tilde{\mathbf{L}}_{\mathrm{i}} \tilde{\mathbf{U}}_{\mathfrak{i}}\left[\begin{array}{c}\mathbf{I}_{\mathrm{k}} \\ \mathbf{0}\end{array}\right]=$

$$
\sum_{i=1}^{\alpha}\left(\tilde{\mathbf{L}}_{i}\right)_{1 . . k, 1 . . k}\left(\tilde{\mathbf{U}}_{i}\right)_{1 . . k, 1 . . k}
$$

3. Expand to dense
4. Reconstruct a matrix fraction: $\mathbf{S}=\mathbf{P} / \mathbf{Q}$

Block Wiedemann algorithm with rank displacement structure

- Structured projections: $\mathbf{U}=\mathbf{V}=\left[\begin{array}{c}\mathbf{I}_{k} \\ \mathbf{0}\end{array}\right] \in \mathbb{K}^{\mathbf{m} \times \mathrm{k}}$

- Generic algorithm
- Applies to Toeplitz-like, Hankel-like and Toeplitz-like+Hankel-like
- $\mathrm{O}^{\sim}\left(\mathrm{m}^{\mathrm{c}(\omega)} \alpha^{\omega-\mathrm{c}(\omega)}\right)$ with $\mathrm{c}(\omega)=2-1 / \omega$
$\rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{1.58} \alpha^{0.53}\right)$

Open problems

Open Problems

Dense matrices over a field

- Is fast polynomial arithmetic $\left(\mathrm{M}(\mathrm{d})=\mathrm{O}\left(\mathrm{d}^{\omega-1-\varepsilon}\right)\right)$ required for charpoly in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$?

Open Problems

Dense matrices over a field

- Is fast polynomial arithmetic $\left(\mathrm{M}(\mathrm{d})=\mathrm{O}\left(\mathrm{d}^{\omega-1-\varepsilon}\right)\right)$ required for charpoly in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$?
- MinPoly vs CharPoly:
\diamond Earlier algorithms: MinPoly often a step towards CharPoly
\diamond [P.-Storjohann 07]: MinPoly deduced from the probabilistic $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ CharPoly
\diamond [Neiger-P. 21]: MinPoly no longer deducible from the deterministic $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ CharPoly

Open Problems

Dense matrices over a field

- Is fast polynomial arithmetic $\left(\mathrm{M}(\mathrm{d})=\mathrm{O}\left(\mathrm{d}^{\omega-1-\varepsilon}\right)\right)$ required for charpoly in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$?
- MinPoly vs CharPoly:
\diamond Earlier algorithms: MinPoly often a step towards CharPoly
\diamond [P.-Storjohann 07]: MinPoly deduced from the probabilistic $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ CharPoly
\diamond [Neiger-P. 21]: MinPoly no longer deducible from the deterministic $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ CharPoly
- Frobenius normal form (and the transformation matrix ?) in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$

Open Problems

Dense matrices over a field

- Is fast polynomial arithmetic $\left(\mathrm{M}(\mathrm{d})=\mathrm{O}\left(\mathrm{d}^{\omega-1-\varepsilon}\right)\right)$ required for charpoly in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$?
- MinPoly vs CharPoly:
\diamond Earlier algorithms: MinPoly often a step towards CharPoly
\diamond [P.-Storjohann 07]: MinPoly deduced from the probabilistic $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ CharPoly
\diamond [Neiger-P. 21]: MinPoly no longer deducible from the deterministic $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ CharPoly
- Frobenius normal form (and the transformation matrix ?) in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$

Structured matrices

- Make the blackbox approach significantly competitive (improve over [Villard 03] $\mathrm{O}^{\sim}\left(\mathrm{m}^{2.36}\right)$ estimate)

Open Problems

Dense matrices over a field

- Is fast polynomial arithmetic $\left(\mathrm{M}(\mathrm{d})=\mathrm{O}\left(\mathrm{d}^{\omega-1-\varepsilon}\right)\right)$ required for charpoly in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$?
- MinPoly vs CharPoly:
\diamond Earlier algorithms: MinPoly often a step towards CharPoly
\diamond [P.-Storjohann 07]: MinPoly deduced from the probabilistic $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ CharPoly
\diamond [Neiger-P. 21]: MinPoly no longer deducible from the deterministic $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ CharPoly
- Frobenius normal form (and the transformation matrix ?) in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$

Structured matrices

- Make the blackbox approach significantly competitive (improve over [Villard 03] $\mathrm{O}^{\sim}\left(\mathrm{m}^{2.36}\right)$ estimate)
- Randomize the $\mathrm{O}^{\sim}\left(\mathrm{m}^{1.58} \alpha^{0.53}\right)$ generic algorithm for Toeplitz-like+Hankel-like matrices

Open Problems

Dense matrices over a field

- Is fast polynomial arithmetic $\left(\mathrm{M}(\mathrm{d})=\mathrm{O}\left(\mathrm{d}^{\omega-1-\varepsilon}\right)\right)$ required for charpoly in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$?
- MinPoly vs CharPoly:
\diamond Earlier algorithms: MinPoly often a step towards CharPoly
\diamond [P.-Storjohann 07]: MinPoly deduced from the probabilistic $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ CharPoly
\diamond [Neiger-P. 21]: MinPoly no longer deducible from the deterministic $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ CharPoly
- Frobenius normal form (and the transformation matrix ?) in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$

Structured matrices

- Make the blackbox approach significantly competitive (improve over [Villard 03] $\mathrm{O}^{\sim}\left(\mathrm{m}^{2.36}\right)$ estimate)
- Randomize the $\mathrm{O}^{\sim}\left(\mathrm{m}^{1.58} \alpha^{0.53}\right)$ generic algorithm for Toeplitz-like+Hankel-like matrices

CharPoly over $\mathbb{K}[y]$

No improvement since [Kaltofen Villard 05] $\mathrm{O}\left(\mathrm{m}^{2.6973}\right)$ division free algorithm

- Better understanding of the bivariate matrix structure required

[^0]: ${ }^{1}$ https://github.com/linbox-team/fflas-ffpack

