Advanced Calculus I: Homework 7

Assigned 10/23/2014, due 10/30/2014.

Exercise 1

Specify the domain of each of the following functions, then draw it, and say at which points it is continuous:

- (1) $x \mapsto |x|$ (2) $x \mapsto x^2 + 3x + 1$ (3) $x \mapsto \sqrt{x}$ (4) $x \mapsto \frac{1}{x+1}$ (5) $x \mapsto \sin^2(x) + 3\sin(x) + \cos(x)$ (6) $x \mapsto \begin{cases} 1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{Q} \end{cases}$

Exercise 2

Let D be a subset of \mathbb{R} , and $E \subset D$. Let $f: D \to \mathbb{R}$ be a function. Let $g: E \to \mathbb{R}$ be the restriction of f

$$\forall x \in E, \ g(x) = f(x).$$

- (1) Show that, if f is continuous, then so is q.
- (2) Does the converse property necessarily hold? If your answer is yes, prove it, else provide a counterexample.

Exercise 3

Let a < b be two real numbers, and let $f:(a,b) \to \mathbb{R}$ be a function. One says that f is Lipschitz if there exists a real number $\alpha > 0$ such that:

$$\forall x, y \in (a, b), |f(x) - f(y)| \le \alpha |x - y|.$$

- (1) Give an example of a Lipschitz function, defined on some interval (a, b) of your choice; give explicitly the value of the constant α .
- (2) Show that a Lipschitz function $f:(a,b)\to\mathbb{R}$ is continuous.

Exercise 4 (Reprinted from Ex. 4 p. 104 in [Gaughan]).

Let D be a subset of \mathbb{R} , $f:D\to\mathbb{R}$ be a function, and let $x_0\in D$. Show that, if x_0 is not an accumulation point of D, then f is automatically continuous at x_0 .

Exercise 5

Let D be a subset of \mathbb{R} , $f,g:D\to\mathbb{R}$ be two functions, and let $x_0\in D$. We assume that f and g are continuous at x_0 . Show that, if $f(x_0) > g(x_0)$, then there exists a neighborhood Q of x_0 such that:

$$\forall x \in Q \cap D, \ f(x) > g(x).$$

[Hint: it may be worth drawing the situation...]

Exercise 6

Let $f, g : \mathbb{R} \to \mathbb{R}$ be two continuous functions over \mathbb{R} , such that, for any rational number $a \in \mathbb{Q}$, one has f(a) = g(a).

- (1) Let x be an arbitrary real number. Why does there exist a sequence $\{r_n\}$ of rational numbers such that $r_n \to x$?
- (2) By using (1) and the characterization of the continuity of functions in terms of sequences, show that, for any real number x, f(x) = g(x).

1