
On the definition of ulp (x)

Jean-Michel Muller

CNRS – Laboratoire LIP, projet Arenaire

(CNRS, ENS Lyon, INRIA, Univ. Lyon 1),

46 Allée d’Italie,

69364 Lyon Cedex 07,

France

Function ulp (acronym for unit in the last place) is frequently used for expressing errors in

floating-point computations. We present several previously suggested definitions of that function,

and analyse some of their properties.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—Computer arith-

metic

Additional Key Words and Phrases: Floating-point arithmetic, computer arithmetic, unit in the
last place, ULP

1. INTRODUCTION

The term ulp (acronym for unit in the last place) was coined by W. Kahan in 1960.
The original definition was [Kahan 2004]:

ulp (x) is the gap between the two floating-point numbers nearest x,
even if x is one of them.

Ulps are of interest for measuring/describing the accuracy of “atomic” computations
(e.g., elementary functions, complex division, evaluation of small polynomials or dot
products), that is, computations that need be extremely accurate. In a way, ulps
are interesting for expressing errors when these errors are not larger than a few
ulps. They are not suited for expressing errors of fairly “large” computations. A
consequence of that is that the use of ulps is widespread in computer arithmetic
and quite infrequent in numerical analysis.

As told by Kahan [Kahan 2004], the adoption of the IEEE-754 standard for
floating-point arithmetic has made infinities and NaNs ubiquitous, and that must
be taken into account in the definition of ulp (x). Kahan now suggests the following
definition:

ulp (x) is the gap between the two finite floating-point numbers nearest

Authors’ address: J.-M. Muller, LIP/Arénaire (CNRS-ENS Lyon-INRIA-UCBL), ENS Lyon, 46

Allée d’Italie, F-69364 Lyon Cedex 07 France; email: Jean-Michel.Muller@ens-lyon.fr.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2005 ACM 0098-3500/2005/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005, Pages 1–0??.

2 · Jean-Michel Muller

x, even if x is one of them. (But ulp (NaN) is NaN.)

Several slightly different definitions of ulp (x) appear in the literature [Goldberg
1991; Harrison 1999; Markstein 2000; Overton 2001]. In this paper, we restate
these various definitions and we analyze some of their properties. Among these
properties, some have certainly already been found by other people having dealt
with this topic (without, to my knowledge, having been published, except when I
give references). And yet, I feel it may be useful to collect them in a paper. Good
knowledge of these properties may be important, for instance, for anyone who want
to prove sure yet tight bounds on the errors of atomic computations: more than
claiming that a definition is better than the other ones, the goal of the paper is to
explain which properties are true, in which cases, so that they can be safely used
in proofs.

We briefly define the floating-point numbers, to make the paper self-complete.
For more information, see [Kahan 1996; Overton 2001].

Definition 1 Floating-point numbers. A floating-point format is (at least
partially1) defined by three integers: a radix r ≥ 2, a precision p and extremal
exponents Emin < 0 and Emax > 0.

In such a format, a finite floating-point number X has the form

X = (−1)s ×M × re−p+1,

where s is 0 or 1, and M and e are integers satisfying 0 ≤ M ≤ rp − 1 and
Emin ≤ e ≤ Emax. Whenever possible, it is required that rp−1 ≤ M . In such a
case, X is a normal number. When this is not possible (that is, when |X| < rEmin),
X is a subnormal number.

The real number m = M × r−p+1 is called the mantissa of X, and e is called the
exponent of X. The precision p is the number of radix-r digits of the mantissa2.

Throughout the paper, we assume a radix-r floating-point (FP for short) arithmetic,
with precision p. If X is an FP number, then X+ denotes the smallest FP number
larger than X and X− denotes the largest FP number less than X.

A good definition of function ulp :

—should (of course) agree with the “intuitive” notion when x is not in an “ambigu-
ous area” (i.e., x is not very near a power of the radix, of larger than the largest
representable number, or ±∞, or zero. . .);

—should be useful : after all, for a binary format with precision p, defining ulp (1)
as 2−p (i.e., 1−1−) or 2−p+1 (i.e., 1+−1) are equally legitimate from a theoretical
point of view. What matters is which choice is helpful (i.e., which choice will
preserve in “ambiguous areas” properties that are true when we are far enough
from them);

Let us consider the following common claims. They are true “in general”, but
they need some clarification. In the following RN (x) is x rounded to the nearest

1Partially only, because infinities and NaNs must also be defined.
2The possible implicit leading bit of the binary systems is counted in these p digits. For instance,

in IEEE-754 double precision arithmetic, p is equal to 53.

ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

On the definition of ulp (x) · 3

(even) floating-point (FP) number, RD (x) is x rounded towards −∞, RU (x) is x
rounded towards +∞, and RZ (x) is x rounded towards zero. The uppercase letter
X will denote an FP number, whereas x will denote a real number.

Common claim 1.

X = RN (x) ⇒ |x−X| ≤ 1
2

ulp

Common claim 2.

|x−X| < 1
2

ulp ⇒ X = RN (x)

or the following, slightly different variant,

|x−X| ≤ 1
2

ulp ⇒ for all FP numbers Y, |Y − x| ≥ |X − x|.

Common claim 3.

|x−X| < 1 ulp ⇔ X ∈ {RD (x), RU (x)}

In these claims, several things are unclear. The first one, of course, is the defin-
ition of ulp (especially near the powers of the radix). The second one is whether
“ ulp ” means ulp (x) or ulp (X). Of course, in most practical cases, both values
will be equal. But in difficult cases (e.g., X is a loose approximation to x, or these
values are very close to a power of the radix), they may differ.

2. SHOULD WE CONSIDER ULP(EXACT) OR ULP(APPROXIMATION) ?

It should be clear that, for measuring the error of an approximation, the (possibly
very loose) approximation should in general not be used for defining the measure of
error: the distance between x (exact value) and X (FP approximation) should be
expressed in terms of ulp (x), instead of ulp (X). Just consider the example given
in Figure 1: we assume a binary floating-point system, with precision p (i.e., p-bit
mantissas), we consider the real number x = 1+ = 1 + 2−p+1 and two (very poor)
approximations A = 2− = 2 − 2−p+1 and B = 2+ = 2 + 2−p+2. A approximates
x with error (2p−1 − 2) ≈ 2p−1 ulp (A), whereas B approximates x with error
(2p−2 +1/2) ≈ 2p−2 ulp (B). From these values, one could believe that B is a much
better approximation to x than A. And yet, A is closer to x than B. This shows
that ulp (approximation) cannot be a sensible unit for expressing errors.

3. VARIOUS DEFINITIONS OF FUNCTION ULP

Definition 2 Kahan [754-R Committee 2004; Kahan 2004]. KahanUlp (x)
is the width of the interval whose endpoints are the two finite representable numbers
nearest x (even if x is not contained within that interval).

Note: in [Harrison 1999], Harrison attributes the previous definition of ulp (x)
to me, because I used approximately the same in my book on elementary func-
tions [Muller 1997] (when writing the book, I was not aware of Kahan’s definition).

Definition 3 Harrison [Harrison 1999]. HarrisonUlp (x) is the distance
between the closest straddling points a and b (i.e., those with a ≤ x ≤ b and a 6= b),
assuming an unbounded exponent range.

ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

4 · Jean-Michel Muller

0 1/4 1/2 2 4

.........

1

x = 1+ = 1 + 2−p+1

A = 2− = 2− 2−p+1

B = 2+ = 2 + 2−p+2

Fig. 1. A approximates x with error (2p−1 − 2) ≈ 2p−1 ulp (A), whereas B approximates x with
error (2p−2 + 1/2) ≈ 2p−2 ulp (B). From these values, one could believe that B is a much better

approximation to x than A. And yet, A is closer to x than B.

It is worth being noticed that Kahan’s and Harrison’s definitions coincide on FP
numbers. However, for real numbers they may differ near powers of the radix. For
instance, in radix 2 with precision p, if 1 < x < 1+2−p−1 then KahanUlp (x) = 2−p

and HarrisonUlp (x) = 2−p+1.

Definition 4 Goldberg [Goldberg 1991].
If the FP number d0.d1d2d3d4 . . . dp−1r

e is used to represent x, it is in error by

|d0.d1d2d3d4 . . . dp−1 − (x/re)|

units in the last place.

This definition uses the approximation that represents x: it does not define
ulp as a function of x, since the value depends on which floating-point number
approximates x. However, it clearly defines a function GoldbergUlp (X), for a
floating-point number X ∈ [re, re+1], as re−p+1. Hence a natural generalization
to real numbers is the following, that is equivalent to the one given by Cornea-
Hasegan, Golliver and Markstein3 [Cornea-Hasegan et al. 1999; Markstein 2000]: if
x ∈ [re, re+1) then GoldbergUlp (x) = re−p+1.

One of the reviewers of this paper suggested the following definition.

Definition 5 Due to one of the reviewers.
Define a function I(x) as follows:

—I(0) = 0;
—between two consecutive floating point numbers X and Y , X < Y , I increases by

1, linearly.

The ulp distance between two real numbers a and b, denoted δulp(a, b) is |I(b) −
I(a)|.

3They gave it in radix 2, but generalization to radix r is straightforward.

ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

On the definition of ulp (x) · 5

y

1

X

ε ε

x is somewhere in this domain

Fig. 2. With the ulp function suggested by one of the reviewers...

This definition is very elegant, and has nice properties for expressing errors
(for instance, for saying that the maximum error of some elementary function is
0.501 ulp .), since with that definition, we always have

|x−X| < 1
2
δulp(x,X) ⇒ X = RN (x)

and

|x−X| ≤ 1
2
δulp(x,X) ⇒ for all FP numbers Y, |Y − x| ≥ |X − x|.

and

|x−X| < 1δulp(x,X) ⇔ X ∈ {RD (x), RU (x)} .

Its drawback appears for actually computing error bounds: when one’s calcula-
tions show that a computed result X is at some distance ε from the exact result x,
one may want to express this error in terms of ulps.

Overton [Overton 2001] defines function ulp for FP numbers only. He defines
ulp (X), for X > 0, as the gap between X and the next larger floating-point number
(for X < 0, ulp (X) = ulp (−X)). This value of ulp (X) is the same as G(X), given
above.

4. SOME PROPERTIES (ASSUMING UNBOUNDED EXPONENTS)

Definition 6. A regular ulp function is such that there exists a value xcut ∈
[1, 1 + r−p+1) so that

ulp (x) = r−p+1+k

if rkxcut < x < rk+1xcut. The number xcut will be called the “cutting point” of the
ulp function.

ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

6 · Jean-Michel Muller

1

ulp = 2−p

ulp = 2−p+1

1 + 2−p−1

x y

Fig. 3. The values of KahanUlp (x) near 1, assuming a binary FP system with precision p. Note

the strange side effect: 1 seems to be a better approximation to y than to x.

1

ulp = 2−p

ulp = 2−p+1

Fig. 4. The values of HarrisonUlp (x) near 1, assuming a binary FP system with precision p.

1

ulp = 2−p

ulp = 2−p+1

Fig. 5. The values of Modified GoldbergUlp (x) near 1, assuming a binary FP system with preci-
sion p. Notice that Modified GoldbergUlp (x) and HarrisonUlp (x) only differ when x is a power

of the radix.

This does not uniquely define the value of ulp (x) since there remains an ambiguity
at x = rkxcut. This ambiguity has no importance if xcut 6= 1, but may make a
difference if xcut = 1.

For instance, both HarrisonUlp and KahanUlp are regular ulp functions, with
xcut = 1 for HarrisonUlp and xcut = 1 + r−p

2 (r − 1) for KahanUlp .
ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

On the definition of ulp (x) · 7

4.1 With rounding to nearest

Theorem 1. We have

|X − x| < 1
2

ulp (x) ⇒ X = RN (x)

for any real x and FP number X, if and only if

xcut ≥ 1 + r−p(
r

2
− 1). (1)

Proof: We only consider the case 1 ≤ x < 1+ (the other cases are either straight-
forward, or easily deduced from this one). First, if x > xcut, then ulp (x) = r−p+1.
In that case, since 1− = 1−r−p cannot be the FP number that is nearest x (because
x is closer to 1 than to 1−), we must have

x− 1− ≥ 1
2

ulp (x),

i.e.,

x ≥ 1 + r−p(
r

2
− 1).

This gives the condition of the theorem.
Conversely, if xcut ≥ 1 + r−p(r

2 − 1) then

—if 1 ≤ x < xcut then ulp (x) = 1 − 1− = r−p. Hence, the only values that can
be within 1

2 ulp (x) from x (if any) are 1 and 1+, and at most one of these values
only can be within 1

2 ulp (x) from x. If there is one, it will necessary be the FP
number that is nearest x;

—if x > xcut then ulp (x) = 1+ − 1 = r−p+1. Since (1) implies that x − 1− >
1
2 ulp (x), the only values that can be within 1

2 ulp (x) from x (if any) are 1 and
1+, and at most one of these values only can be within less than 1

2 ulp (x) from
x. If there is one, it will necessary be the FP number that is nearest x.

Theorem 2. To have

X = RN (x) ⇒ |X − x| ≤ 1
2

ulp (x)

for any real x and FP number X, we need

xcut ≤ 1 +
1
2
r−p. (2)

Proof: Again, we only consider the case 1 ≤ x < 1+ (the other cases are either
straightforward, or easily deduced from this one).

If xcut > 1 + 1
2r−p then, for

1 +
1
2
r−p < x < min{xcut, 1 +

1
2
r−p+1}

we have, {
RN (x) = 1
ulp (x) = r−p

ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

8 · Jean-Michel Muller

hence, we have 1 = RN (x), and yet |1− x| > 1
2 ulp (x). Hence the condition of the

theorem.
Conversely, if xcut ≤ 1 + 1

2r−p, then for 1 ≤ x ≤ xcut, we have both RN (x) = 1
and |1− x| ≤ 1

2 ulp (x), and for xcut < x < 1+, we have ulp (x) = r−p+1 = 1+ − 1,
so RN (x) is the value X in {1, 1+} that is nearest x, and |X − x| is obviously less
than or equal to (1+ − 1)/2 = 1

2 ulp (x).

Property 1. In radix 2,

|X − x| < 1
2

HarrisonUlp (x) ⇒ X = RN (x)

See Theorem 1 for proof. Property 1 is not true in radices greater than or equal to
3. Figure 6 gives a counter-example in radix 3.

1+

1 + 3−p/2

x

1

X = 1−

Fig. 6. This example shows that Property 1 is not true in radix 3. Here, x satisfies 1 < x <

1 + 1
2
3−p and X = 1− = 1− 3−p. We have HarrisonUlp (x) = 3−p+1, and |x−X| < 3−p+1/2,

so that |x−X| < 1
2

HarrisonUlp (x). And yet, X 6= RN (x).

Property 2. For any radix,

X = RN (x) ⇒ |X − x| ≤ 1
2

HarrisonUlp (x)

See Theorem 2 for proof.

Property 3. For any radix,

|X − x| < 1
2

KahanUlp (x) ⇒ X = RN (x)

See Theorem 1 for proof.
ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

On the definition of ulp (x) · 9

Property 4. In radix 2,

X = RN (x) ⇒ |X − x| ≤ 1
2

KahanUlp (x)

See Theorem 2 for proof. Property 4 is not true in radices greater than or equal
to 3. Figure 7 gives a counter-example in radix 3.

1+

1 + 3−p/2

1

1−

In this area, 1 = RN (x)

and yet |x− 1| > 0.5KahanUlp (x).

Fig. 7. This example shows that Property 4 is not true in radix 3. If 1 + 1
2
3−p < x < 1 + 3−p,

then 1 = RN (x), and yet |x− 1| > 0.5KahanUlp (x).

We see that with rounding to nearest in radix 2, both Kahan’s and Harrison’s
definitions preserve the common claims listed above. As we shall see later, the
situation is different with directed roundings.

Property 5. In radix 2,

|X − x| < 1
2

GoldbergUlp (x) ⇒ X = RN (x)

Property 6. For any radix,

X = RN (x) ⇒ |X − x| ≤ 1
2

GoldbergUlp (x)

See Theorem 2 for proof.

Theorem 3. If the radix r is greater than or equal to 4, there is no regular ulp
function that satisfies both

|X − x| < 1
2

ulp (x) ⇒ X = RN (x)

and

X = RN (x) ⇒ |X − x| ≤ 1
2

ulp (x).

ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

10 · Jean-Michel Muller

Theorem 3 implies that for r ≥ 4 (which means, in practice, for r = 10, since
radices different from 2 and 10 seem no longer used) we have to choose between
both properties: they will be true “in general”, but at least one of them will be
wrong when x is very close to a power of r. Theorem 3 is an immediate consequence
of Theorems 1 and 2 (conditions (1) and (2) become incompatible for r ≥ 4). For
r = 3, the only allowable value of xcut is 1+3−p/2. For r = 2, xcut ∈ [1, (1+1+)/2].

4.2 With directed roundings

Property 7. For any value of the radix r,

X ∈ {RD (x), RU (x)} ⇒ |X − x| < 1HarrisonUlp (x)

But now the converse is not true. There are values X and x for which |X − x| <
1 HarrisonUlp (x), and yet X is not in {RD (x), RU (x)} (consider the case x slightly
above 1 and X equal to 1−, the FP predecessor of 1).

With KahanUlp (x), also, there are values X and x for which |X−x| < 1 HarrisonUlp (x),
and yet X is not in {RD (x), RU (x)} (consider, in radix 2 with precision p, the
case X = 1− 2−p and x between 1 + 2−p−1 and 1 + 2−p).

With KahanUlp (x), there is no equivalence of property 7. As noticed by Harri-
son [Harrison 1999], we can have X ∈ {RD (x), RU (x)}, and |X − x| significantly
larger than 1 KahanUlp (x) (it can be arbitrarily close, without being equal, to
r KahanUlp (x)). Consider the radix-2 case depicted by Figure 8.

1

x

1 + 2−p−1

X

Fig. 8. We assume radix 2 and precision p. X is equal to RU (x), and yet |X − x| is very close

to 2KahanUlp (x) [Harrison 1999].

4.3 If anyway one decides to use ulp (X)

Although we have indicated in Section 2 that using ulp (x) as the measure of error
seems much preferable, one may, for some application, find a good reason for using
ulp (X). In such a case, we list the obtained properties below.
ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

On the definition of ulp (x) · 11

Property 8. Assuming unbounded exponents, we find, for any value of the radix
r:

|X − x| < 1
2 HarrisonUlp (X) ⇒ X = RN (x)

X = RN (x) does not imply |X − x| ≤ 1
2 HarrisonUlp (X)

|X − x| < HarrisonUlp (X) ⇒ X ∈ {RD (x), RU(x)}
X ∈ {RD (x), RU(x)} does not imply |X − x| ≤ HarrisonUlp (X)

|X − x| < 1
2 KahanUlp (X) ⇒ X = RN (x)

X = RN (x) does not imply |X − x| ≤ 1
2 KahanUlp (X)

|X − x| < KahanUlp (X) ⇒ X ∈ {RD (x), RU(x)}
X ∈ {RD (x), RU(x)} does not imply |X − x| ≤ KahanUlp (X)

X = RN (x) ⇒ |X − x| ≤ 1
2 GoldbergUlp (X)

|X − x| < 1
2 GoldbergUlp (X) does not imply X = RN (x)

X ∈ {RD (x), RU(x)} ⇒ |X − x| ≤ GoldbergUlp (X)

|X − x| < GoldbergUlp (X) does not imply X ∈ {RD (x), RU(x)}

In that case, Kahan’s and Harrison’s definitions satisfy the same properties, which
is not surprising since they coincide on FP numbers.

5. LINK BETWEEN RELATIVE ERROR AND ERROR EXPRESSED IN ULPS

If X is an approximation to some real number x, its accuracy can be measured by
the relative error (see for instance [Higham 2002]).∣∣∣∣x−X

x

∣∣∣∣ .

Relative errors are very often used to express the accuracy of numerical compu-
tations. Let us examine how to convert an error expressed in ulps from and to a
relative error.

Assume an ulp function, with cutting-point xcut. Assume the floating-point
number X approximates a nonzero real number x. Assume 2k ≤ |x| < 2k+1.

5.1 Conversion from relative errors to ulps

Assume ∣∣∣∣x−X

x

∣∣∣∣ = εr. (3)

If the mantissa of x is less than xcut then ulp (x) = rk−p, hence (3) implies

|x−X| = εr|x|rp−k ulp (x),

which implies

|x−X| ≤ εrxcutr
p ulp (x).

If the mantissa of x is larger than xcut, a similar calculation gives

|x−X| ≤ εrr
p ulp (x).

ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

12 · Jean-Michel Muller

Therefore, a relative error εr implies an error in ulps bounded by

|x−X| ≤ εrxcutr
p ulp (x). (4)

This can be (very) slightly larger than the usually assumed bound εr × rp. For
instance, with Kahan’s definition in radix-2, we get the bound

|x−X| ≤ εr

(
2p +

1
2

)
ulp (x).

In practice, we can get very close to that bound. For instance, if x = 1+2−p−1−2−2p

(that is, x is very slightly below xcut) and X = 1. The relative error is

2−p−1 − 5× 2−2p−2 + 9× 2−3p−3 − · · ·

and the error in ulps is (
1
2
− 2−p

)
KahanUlp ,

hence the error in ulps is approximately

2p +
1
2
− 2−p

times the relative error.

5.2 Conversion from ulps to relative errors

Assume that |x−X| = α ulp (x). We easily get:∣∣∣∣x−X

x

∣∣∣∣ ≤ α× r−p+1, (5)

which is the bound that is usually assumed.

6. PROPERTIES NEAR INFINITY

Kahan’s definition clearly defines function ulp for big numbers. Harrison’s defini-
tion too, since it assumes unbounded exponents, but in a way that does not allow
to preserve claims 1, 2 and 3. Define L as the largest finite FP number, and L− as
its predecessor. If x is larger than L, then it is clear from definition 2 that

KahanUlp (x) = L− L−.

From this, for big x, it is clear that

|X − x| < 1
2

KahanUlp (x) ⇒ X = RN (x)

So, property 3 is always true (there is no need to assume unbounded exponents, as
in the previous section).

Interestingly enough, with IEEE-754 FP (binary) numbers, the converse holds.
This is due to a feature of the IEEE-754 Standard [American National Standards In-
stitute and Institute of Electrical and Electronic Engineers 1985] (which by the way
makes RN (x) quite different from what one would expect from the term “rounding
ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

On the definition of ulp (x) · 13

to nearest”). The standard says that an infinitely precise result with magnitude at
least

2emax (
2− 2−p

)
shall round to ∞ with no change in sign. With that convention, if X is finite,

X = RN (x) ⇒ |X − x| ≤ 1
2

KahanUlp (x),

i.e., Property 4 remains true for big numbers.

7. CONCLUSION

It appears that a definition that would preserve most properties would be

ulp (x) =
{

HarrisonUlp (x) if |x| ≤ L
KahanUlp (x) = L− L− otherwise,

which could be given as follows:

Definition 7. If x is a real number that lies between two finite consecutive FP
numbers a and b, without being equal to one of them, then ulp (x) = |b−a|, otherwise
ulp (x) is the distance between the two finite FP numbers nearest x. Moreover,
ulp (NaN) is NaN.

Acknowledgement

In November 2004, I had the opportunity to discuss these topics (as well as other
aspects of floating-point arithmetic) with Professor Kahan. These were enlightening
discussions. Although we may occasionally disagree on minor issues, we share
the same feeling that the big improvements brought to numerical computing by
the IEEE-754 and 854 standards for floating-point arithmetic are endangered: we
must explain to computer architects, compiler designers and numerical application
programmers that some features of the standards that sometimes seem arcane or
that seem to hinder performance may be crucial when reliability and/or portability
are at stake.

REFERENCES

754-R Committee. 2004. DRAFT standard for floating-point arithmetic p754 d0.6.5. Available
at http://www.validlab.com/754R/drafts/754r.pdf.

American National Standards Institute and Institute of Electrical and Electronic
Engineers. 1985. IEEE standard for binary floating-point arithmetic. ANSI/IEEE Standard,
Std 754-1985, New York.

Cornea-Hasegan, M. A., Golliver, R. A., and Markstein, P. 1999. Correctness proofs outline

for Newton-Raphson based floating-point divide and square root algorithms. In Proceedings
of the 14th IEEE Symposium on Computer Arithmetic (Adelaide, Australia), Koren and Ko-

rnerup, Eds. IEEE Computer Society Press, Los Alamitos, CA, 96–105.

Goldberg, D. 1991. What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys 23, 1 (Mar.), 5–47.

Harrison, J. 1999. A machine-checked theory of floating-point arithmetic. In Theorem Proving

in Higher Order Logics: 12th International Conference, TPHOLs’99, Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, and L. Théry, Eds. Lecture Notes in Computer Science, vol. 1690.

Springer-Verlag, Berlin, 113–130.

ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

14 · Jean-Michel Muller

Higham, N. 2002. Accuracy and Stability of Numerical Algorithms, Second Edition. SIAM,

Philadelphia, PA.

Kahan, W. 1996. Lecture notes on the status of IEEE-754. PDF file accessible electronically
through the Internet at the address http://www.cs.berkeley.edu/∼wkahan/ieee754status/
IEEE754.PDF.

Kahan, W. 2004. A logarithm too clever by half. Available at http://http.cs.berkeley.edu/
∼wkahan/LOG10HAF.TXT.

Markstein, P. 2000. IA-64 and Elementary Functions : Speed and Precision. Hewlett-Packard

Professional Books. Prentice Hall, Englewood Cliffs, NJ.

Muller, J. 1997. Elementary Functions, Algorithms and Implementation. Birkhauser, Boston.

Overton, M. A. 2001. Numerical Computing with IEEE Floating-Point Arithmetic. SIAM,
Philadelphia, PA.

Appendix: Maple programs that compute ulp (x) in double precision

The following two Maple programs compute KahanUlp (t) and ulp (t) as suggested
in Definition 7 for any real number t, assuming that the used floating-point format
is the double precision format of the IEEE-754 standard (i.e., r = 2 and p = 53S).

KahanUlp := proc(t);

x := abs(t);

if x < 2^(-1021) then res := 2^(-1074)

else if x > (1-2^(-53))*2^(1024) then res := 2^971

else

powermin := 2^(-1021); expmin := -1021;

powermax := 2^1024; expmax := 1024;

x is between powermin = 2^expmin and powermax = 2^expmax

while (expmax-expmin > 1) do

expmiddle := round((expmax+expmin)/2);

powermiddle := 2^expmiddle;

if x >= powermiddle then

powermin := powermiddle;

expmin := expmiddle

else

powermax := powermiddle;

expmax := expmiddle

fi;

od;

now, expmax - expmin = 1

and powermin <= x < powermax

if x/powermin <= 1+2^(-54) then res := 2^(expmin-53)

else res := 2^(expmin-52)

fi;

fi;

fi;

res;

end;

SuggestedUlp := proc(t);

x := abs(t);

if x < 2^(-1021) then res := 2^(-1074)

else if x > (1-2^(-53))*2^(1024) then res := 2^971

else

ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

On the definition of ulp (x) · 15

powermin := 2^(-1021); expmin := -1021;

powermax := 2^1024; expmax := 1024;

x is between powermin = 2^expmin and powermax = 2^expmax

while (expmax-expmin > 1) do

expmiddle := round((expmax+expmin)/2);

powermiddle := 2^expmiddle;

if x >= powermiddle then

powermin := powermiddle;

expmin := expmiddle

else

powermax := powermiddle;

expmax := expmiddle

fi;

od;

now, expmax - expmin = 1

and powermin <= x < powermax

if x = powermin then res := 2^(expmin-53)

else res := 2^(expmin-52)

fi;

fi;

fi;

res;

end;

ACM Transactions on Mathematical Software, Vol. V, No. N, November 2005.

