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ase analysis for the Probabilisti
 BinPa
king ProblemM. Bellalouna, S. Souissi, and B. Y
artABSTRACT: In the Probabilisti
 Bin Pa
king Problem (PBPP), someitems are randomly deleted after having been pla
ed into bins. The problem is torearrange the remaining items, using the a priori solution. The initial arrangementbeing done with the Next Fit De
reasing heuristi
, we 
onsider two pro
edures.In the �rst one, the NF algorithm is applied to the new list. In the se
ond one,su

essive groups of bins are optimally rearranged. In both 
ases, we prove a lawof large numbers and a 
entral limit theorem for the number of o

upied bins asthe initial number of items tends to in�nity.1 Introdu
tionBin Pa
king is a 
lassi
al NP-hard problem of optimization [10℄: given items ofsizes (x1; : : : ; xn), all smaller than 1, one must pa
k them into bins of size 1, so asto minimize the total number of non-empty bins. Many approximation heuristi
shave been proposed and studied: see Co�man et al. [5℄ for a survey. We shallfo
us here on the Next Fit De
reasing (NFD) heuristi
 [1℄. Firstly the items areranked in de
reasing order (this 
an be done in O(n log(n)) time). Then they areput into bins a

ording to the the Next Fit algorithm: one bin is open at a time;when a new item has to be pla
ed, either it �ts in the open bin or it does not, inwhi
h 
ase the 
urrent box is 
losed and a new one is opened (it takes O(n) timeto pla
e the items on
e sorted). In the average 
ase analysis, the item sizes arerandom variables, and so is the number of non-empty bins. Its distribution hasbeen thoroughly studied, in parti
ular by Csirik et al. [7, 6℄, Hofri and Kamhi [13℄and Rhee [17, 18℄ (see also se
tion 5.2 of [11℄ or se
tion 10.3 of [12℄).The idea of so 
alled Probabilisti
 Combinatorial Optimisation Problems
omes from Jaillet [14, 15℄ who introdu
ed it for the Traveling Salesman Prob-lem (see also [3, 4℄). The Probabilisti
 Bin Pa
king Problem (PBPP) was �rststudied in [2℄. The idea is the following. Assume that a list of n items has beengiven, and an a priori solution (exa
t or approximate) has been found for the BPP.Suppose now that some items randomly disappear from the list. Can the knowl-edge of the a priori solution for the full list be used to 
onstru
t a solution for theredu
ed one? Can this be done eÆ
iently without reopening simultaneously toomany bins of the a priori solution?The aim of this paper is to propose an average 
ase analysis of the PBPP,when the a priori solution is obtained through the NFD heuristi
. We shall dealwith two sour
es of randomness. Firstly, the initial sizes of the items are inde-pendent and identi
ally distributed random variables (i.i.d.r.v.'s) (X1; : : : ; Xn).Se
ondly, on
e they have been sorted in de
reasing order and pla
ed into bins bythe NF algorithm, a random binary de
ision is taken: for ea
h i = 1; : : : ; n theitem number i remains or disappears. To formalize this, we 
onsider a n-tuple(U1; : : : ; Un) of i.i.d.r.v.'s, uniformly distributed on [0; 1℄. The two random ve
tors(Xi)i=1;:::;n and (Ui)i=1;:::;n are independent. The probability for an item to stayin the list may depend on its size: we denote by �(x) the probability for an item of1



size x to stay in the list. It will be 
onvenient to view disappearing items as obje
tswhose size has be
ome null. Thus the new list of sizes is (Y1; : : : ; Yn), where fori = 1; : : : ; n: Yi = Xi IfUi��(Xi)g ;denoting by IA the indi
ator of an event A.If the NFD heuristi
 has been used for the a priori solution, an obvious pro
e-dure immediately 
omes to mind. Sin
e the initial items were ranked in de
reasingorder, so are the remaining ones, and it is fast and natural to apply again froms
rat
h the NF algorithm to the list of remaining items. The average 
ase analysisof this pro
edure is proposed in se
tion 2. The total number of bins will be provedto satisfy a law of large numbers and a 
entral limit theorem, and an expli
itexpression for the asymptoti
 mean and varian
e will be given (theorem 2.3).However, it is not in the spirit of Probabilisti
 Combinatorial Problems notto use the a priori solution on
e the items have been randomly deleted. Therefore,we shall study another heuristi
. Suppose the a priori NFD solution has been
omputed, its bins being numbered by order of opening. On
e the items have beenrandomly deleted, va
an
y is left in some of the bins. The Group Rearrangement(GR) pro
edure depends on a �xed integer m whi
h is the number of bins to beopened simultaneously. Here is the algorithm.1. Open the bins of the a priori solution by groups of m, one group at a time:�rst bins with numbers 1 to m, then m+ 1 to 2m, and so on. . .2. For ea
h group of m bins, rearrange the remaining items in an optimal way.3. Eliminate those bins that have been emptied.The average 
ase analysis of the GR pro
edure is treated in se
tion 3. Again, a lawof large numbers and a 
entral limit theorem for the total number of non-emptybins will be proved (theorem 3.1).Of 
ourse, the GR pro
edure is neither faster, nor better on average than theNFD heuristi
: both run in linear time, and the asymptoti
 mean number of binsis larger for the former than for the latter. However, numeri
al eviden
e shows thatthe di�eren
e is small. We are not able at this point to propose a similar studyfor the optimal a priori solution. But we 
onsider our NFD results as a reason tobelieve that lo
al rearrangements inside small sized groups of bins, su
h as in theGR pro
edure, may bring a fast and relatively good solution to the PBPP, whenstarting from an a priori solution, be it optimal or not.2 PBPP by the NFD heuristi
In this se
tion, we study the asymptoti
s of the total number of bins �lled by theNFD heuristi
, for items of random sizes, on
e some of them have been randomlydeleted.Two independent sequen
es of i.i.d.r.v.'s are given: (Xi)i�1 and (Ui)i�1. TheXi's are the sizes of the original items, and the Ui's are the random variables thatde
ide of their deletion. The probability distribution fun
tion of the Xi's is denotedby F and the Ui's have uniform distribution on [0; 1℄. A measurable fun
tion �,from [0; 1℄ into itself is given. If x is an item size, �(x) is its probability to remainin the new list. As already pointed out, it is 
onvenient to 
onsider deleted obje
ts2



as items of size 0. Thus the new list of item sizes after random deletions be
omes(Yi)i�1, where for all i � 1: Yi = Xi IfUi��(Xi)g :Noti
e that the Yi's are still i.i.d.r.v.'s. Denote by An the number of bins usedby the NFD algorithm to arrange the n items of sizes Y1; : : : ; Yn. The asymptoti
study of An requires very little adaptation of the 
lassi
al proof for uniformlydistributed sizes, developped by Csirik et al. [6℄ (see Hofri [12℄ se
tion 10.3.1,p.543 �.). We shall review below the main arguments. We are aware of the morepre
ise approa
h of Rhee [17℄, who gives a mu
h better bounding for An than thatof lemma 2.2. The reason why we 
hose Csirik et al.'s trun
ation te
hnique is thatit 
an also be used for the GR pro
edure, to be treated in se
tion 3.The �rst observation is that the number of bins depends more on their typesrather than on their a
tual sizes.De�nition 2.1 For k � 1, an item is said to be of type k if its size x is su
h that1k + 1 < x � 1k :Thus a bin 
an a

omodate exa
tly k obje
ts of type k. To a

ount for deletions,we shall agree that an item of size 0 has type 0. With our probabilisti
 hypotheses,the item types are i.i.d.r.v.'s with values in N. We shall denote by p = (pk)k2Ntheir distribution. For k � 1, the probability for an item to be of type k ispk = Z 1k1k+1 �(x) dF (x) ;whereas its probability to be of type 0 (deletion) isp0 = 1� 1Xk=1 pk = 1� Z 10 �(x) dF (x) :As a parti
ular 
ase, if the original item sizes are uniformly distributed on [0; 1℄and the fun
tion � is 
onstant, one gets p0 = 1� � and for k � 1:pk = �k(k + 1) :The results that follow only depend on the distribution p.Sin
e the items are examined in de
reasing order of size, all items of type 1are treated �rst, and pla
ed alone in as many bins. Then 
ome type 2 items. The�rst of them possibly �ts in the same bin as the last type 1 item, the others arepla
ed 2 by 2 into new bins, and so on. . . It is intuitively 
lear that, apart from afew \frontier" bins that may 
ontain items of di�erent types, most bins will hosta �xed number of items of the same type. Lemma 2.2 below gives bounds on thenumber of used bins, in terms of two fun
tions of the item types.
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Lemma 2.2 Let r � 1 be an integer. De�ne the two fun
tions �1 and �2, from[0; 1℄ into itself by:�1(x) = � 1k if 1k+1 < x � 1k ; k = 1; : : : ; r�1 ;0 if 0 � x � 1r�2(x) = 8<: 1k if 1k+1 < x � 1k ; k = 1; : : : ; r�1 ;1r if 0 < x � 1r ;0 if x = 0 :Let y1; : : : ; yn be n (possibly null) item sizes. Let an be the total number of binsrequired to arrange those items using the NFD heuristi
. Then:nXi=1 �1(yi)� (r � 1) � an � nXi=1 �2(yi) + r :Proof: For k � 1, let nk be the number of type k items. The number of bins theywill o

upy is at least bnkk 
, where b�
 denotes the integer part. Hen
e the lowerbound, negle
ting items of size � r. For the upper bound, all items of type k � r�1
an be a

omodated in at most bnkk 
 + 1 bins, and all items of type k � r in atmost bnkr 
+ 1 bins. �When the input sizes are random, lemma 2.2 provides bounds on An in terms oftwo sums of random variables:nXi=1 �1(Yi)� (r � 1) � An � nXi=1 �2(Yi) + r : (1)In (1), both S1;n =P�1(Yi) and S2;n =P�2(Yi) are sums of bounded i.i.d.r.v.'s.Their asymptoti
 behavior (exponential tail inequalities, law of large numbers,
entral limit theorem) is des
ribed by basi
 results of probability theory (see [8, 9℄or [16℄ as general referen
es). These 
an be passed to An, through a 
areful 
hoi
eof the free parameter r.For r � 1 denote by qr the tail probability for the distribution of types:qr = 1Xk=r pk = 1� r�1Xk=0 pk :We will assume that qr de
reases at least as fast as some negative power of r: thereexist two positive 
onstants 
 and � su
h that for all r � 1,qr � 
r�� : (2)This is a
tually an assumption on both the behavior of the size distribution F
lose to 0, and the fun
tion �.Theorem 2.3 Under the previous hypotheses, denote by � and �2 the followingasymptoti
 mean and varian
e: � = 1Xk=1 pkk : (3)4



�2 = 1Xk=1 pkk2 � �2 : (4)Then the following results hold for An.1. Exponential tail inequality: for all x > 0 and n � 1,P[ jAn � n�j � xpnj ℄ � exp��2(x� n�1=2 � 2p
 n� �2(2+�) )2� : (5)2. Law of large numbers: limn!1 Ann = � a.s. (6)3. Central limit theorem:limn!1P � 1pn�2 (An � n�) � x� = �(x) ; (7)where � denotes the standard Gaussian probability distribution fun
tion.For the parti
ular 
ase of item sizes uniformly distributed on [0; 1℄ and a 
on-stant value of �, the asymptoti
 mean and varian
e 
an be expressed in terms ofRiemann's Zeta fun
tion: �(u) = 1Xi=1 1nu :One gets: � = � (�(2)� 1) ' 0:645 � ;and: �2 = � (�(3)� �(2) + 1)� �2 (�(2) � 1)2 ' 0:557 �� 0:416 �2 :Proof: For j = 1; 2, we shall denote by �j the expe
tation of �j(Yi), and by �2j itsvarian
e: �1 = r�1Xk=1 pkk ; �2 = r�1Xk=1 pkk + qrr ;�21 = r�1Xk=1 pkk2 � �21 ; �22 = r�1Xk=1 pkk2 + qrr2 � �22 :Obviously as r tends to in�nity, �1 and �2 tend to �, whereas �21 and �22 tend to�2. From (1), the following bounds on the PDF of An are easily dedu
ed.P[S2;n � n�2 � x+ r + n qrr ℄ � P[An � n� � x℄� P[S1;n � n�1 � x� r � n qrr ℄ : (8)As sums of bounded i.i.d.r.v.'s, both S1;n and S2;n satisfy 
lassi
al exponential tailinequalities, su
h as Hoe�ding's [16℄:P[jSj;n � n�j j � zpn℄ � 2e�2z2 :5



Both also satisfy the 
entral limit theorem:limn!1P � 1pn (Sj;n � n�j) � x� = �( x�j ) :To derive from (8) the 
orresponding results for An, one needs to let the parameterr tend to in�nity, as a fun
tion of n. Re
all from (2) that qr � 
r��. For all n � 1,we set r = r(n) as follows: r(n) = bp
 n 12+� 
+ 1 : (9)One readily 
he
ks that: nqr(n)r(n) � p
 n 12+� :From there, (5) easily follows from Hoe�ding's inequality applied to S1;n and S2;n.To derive the strong law of large numbers from an exponential inequality su
has (5) is an easy appli
ation of the Borel-Cantelli lemma. For the 
entral limittheorem (7), one just has to divide variables by pn in (8), and let n tend toin�nity: with our 
hoi
e of r(n), both r(n)pn and pn qr(n)r(n) tend to 0. �3 The Group Rearrangement pro
edureWe now turn to the GR pro
edure, in whi
h bins are taken by groups of m, ea
hgroup being optimally rearranged after deletions. As we saw before, in the a priorisolution most bins 
ontain items of the same type. Therefore, most groups of binswill be homogeneous in the sense that ea
h bin of the group 
ontains exa
tly kitems of type k; let us 
all \k-group" su
h a group of m bins. We need to restri
tslightly our assumption on the fun
tion �: we assume now that it is 
onstant forobje
ts of the same type, and denote by �k the probability for an item of type kto remain in the list.Consider a k-group. The number of remaining items in all its m bins, hasbinomial distribution with parameters mk and �k. Let us denote by �k;m =(�k;m(i))i=0;:::;m the probability distribution of the number of remaining bins,on
e the k-group has been rearranged:�k;m(i) = 8>>><>>>: (1� �k)mk for i = 0 ;ikXl=(i�1)k+1�mkl ��lk(1� �k)mk�l for i = 1; : : : ;m :The expe
tation and the varian
e of �k;m will be denoted by ek;m and vk;m re-spe
tively. ek;m = mXi=0 i �k;m(i) and vk;m = mXi=0 i2 �k;m(i)� e2k;m :6



Let p�k be the initial proportion of type k items: for k � 1,p�k = F ( 1k )� F ( 1k + 1) :We shall make the same assumption on the tail of p� as we did for p: there existtwo positive 
onstants 
 and � su
h that for all r � 1,q�r = 1Xk=r p�k � 
r�� : (10)Let Bn;m be the number of remaining bins after the GR pro
edure. The asymp-toti
s of Bn;m is des
ribed in the following result.Theorem 3.1 Under the previous hypotheses, denote by �m and �2m the followingasymptoti
 mean and varian
e.�m = 1Xk=1 p�k ek;mkm ; (11)�2m = 1Xk=1 p�k vk;mkm + e2k;mk2m2! � �2m : (12)Then the following results hold for Bn;m.1. Law of large numbers: limn!1 Bn;mn = �m a.s. (13)2. Central limit theorem:limn!1P" 1pn�2m (Bn;m � n�m) � x# = �(x) : (14)Essentially, Bn;m behaves asymptoti
ally as a sum of n i.i.d.r.v.'s, ea
h having ex-pe
tation �m and varian
e �2m; they 
an be viewed as the individual 
ontributionsof the original n items to the �nal pa
king. Indeed, for n large, a typi
al itembelongs to a k-group with probability p�k. The 
ontribution of km su
h items (onek-group) to Bn;m has expe
tation ek;m and varian
e vk;m; hen
e ea
h 
ontributionshould have expe
tation ek;mkm , and varian
e vk;mkm . Thus the expe
ted squared 
on-tribution of an obje
t of type k should be vk;mkm + e2k;mk2m2 . So �2m 
an be seen as thevarian
e for the 
ontribution of a typi
al item to Bn;m.Clearly, as m in
reases, the spa
e wasted by the GR pro
edure 
omparedto the NFD heuristi
 diminishes. In parti
ular, the asymptoti
 expe
tation �mde�ned by (11) tends to �. One may wonder what is the di�eren
e for small valuesof m. To get a partial answer, we 
omputed numeri
ally �m � �, for m = 2 : : : ; 5,in the parti
ular 
ase where the item sizes are uniformly distributed on [0; 1℄ andthe probability � is a 
onstant. Figure 1 shows a plot of �m�� as a fun
tion of �.7



It turns out that the di�eren
e between the global algorithm (NFD) and the lo
alone (GR) is relatively small, even for m = 2. In order to understand why, let us �xm and �k, and look at the asymptoti
 behavior of ek;m as k in
reases. The law oflarge numbers implies that ek;m 
onverges to i for all values of �k in the interval℄ i�1m ; im ℄, i ranging from 1 to m. In other terms, as k in
reases, ek;m approa
hesbm�k
+ 1. So �m is a
tually 
lose to the following sum :�m ' 1Xk=1 p�k bm�k
+ 1km ;to be 
ompared with � = 1Xk=1 p�k �kk :This also a

ounts for the modes in �m � �, plotted as a fun
tion of � (�gure 1).
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 di�eren
e between the NFD heuristi
 and the GR pro
edure,for m = 2; : : : ; 5.Proof: ControllingBn;m by sums of independent random variables is not as straight-forward as for An, though a similar trun
ation te
hnique will be used. We shall�rst des
ribe the lower bound, then the upper bound.To get a lower bound, we restri
t ourselves to k-groups, with k < r: Bn;m is
ertainly larger than the number of remaining bins after rearrangement of thosek-groups, and suppression of all other groups. Denote by Nk the number of itemsof type k in the original list: the distribution of Nr is binomial with parameters nand p�k. If there are Nk items of type k, then the number of k-groups is 
ertainlylarger than Gk = b 1m(bNkk 
 � 1)
 � 1 : (15)For all k � 1, 
onsider independent sequen
es of i.i.d.r.v.'s (Z(l)m;k)l�1, all indepen-8



dent from the Xi's, where Z(l)m;k has distribution �m;k. De�ne S1;n as the sumS1;n = r�1Xk=1 GkXl=1 Z(l)m;k :The previous reasoning shows that S1;n is smaller than Bn;m in the sto
hasti
ordering sense: for all x, P[S1;n � x℄ � P[Bn;m � x℄ :As in the proof of theorem 2.3, we need to 
ontrol the di�eren
e between n�m andE [S1;n ℄. By Wald's theorem, one hasE [S1;n ℄ = r�1Xk=1 E [Gk ℄ ek;m :By de�nition of Gk, one hasE [Gk ℄ � 1m �E [Nk ℄k � 2�� 2 = np�kkm � 2m � 2 :Remarking that ek;m � m for all k, one getsn�m � E [S1;n ℄ = r�1Xk=1 ek;m�np�kkm � E [Gk ℄�+ 1Xk=r ek;mnp�kkm� r�1Xk=1 ek;m� 2m + 2�+ 1Xk=r ek;mnp�krm� (r�1)(2 + 2m) + nq�rr :Under (10), the same 
hoi
e of r(n) as in the proof of theorem 2.3 ensures thatthis di�eren
e is small 
ompared to pn:r(n) = bp
 n 12+� 
+ 1 : (16)We also need to 
he
k that V ar[S1;m℄� n�2m = o(n). One has:V ar[S1;n℄ = r�1Xk=1 E [Gk ℄ vk;m + V ar[Gk ℄ e2k;m + r�1Xk 6=h=1Cov[Gk ; Gh℄ ek;meh;m :Using the de�nition (15) of Gk, one easily gets:E [Gk ℄ = np�kkm +O(1) ; V ar[Gk ℄ = np�k(1� p�k)k2m2 +O(1) ;Cov[Gk ; Gh℄ = �np�kp�hkhm2 + O(1) :9



From this one dedu
es:V ar[S1;n℄ = n r�1Xk=1 p�k vk;mkm + e2k;mk2m2! � n r�1Xk=1 p�k ek;mkm !2 +O(r2)= n�2m + o(n) ;still using expression (16) for r(n).Let us now turn to the upper bound. The number of remaining bins Bn;m
ertainly in
reases if one negle
ts to rearrange non homogeneous groups. It alsoin
reases if all items of size � 1=r are repla
ed by items of size 1=r in the originallist and none of them disappears. Let Mr denote the number of items of type � r.The upperbound S2;n is the following:S2;n = S1;n + (Mr=r + rm) :One has for all x: P[Bn;m � x℄ � P[S2;n � x℄ :As before, one 
an 
he
k that E [S2;n ℄ = n�m+o(pn) and V ar[S2;n℄ = n�2m+o(n).To �nish the proof along the same lines as that of theorem 2.3, we need to
he
k that the law of large numbers and the 
entral limit theorem hold for S1;nand S2;n, whi
h are sums of random numbers of r.v.'s. We shall do it for S1;n;similar arguments hold for S2;n. The law of large numbers is the easy part. Byformula (15), Gk in
reases a.s. to in�nity andlimn!1 Gkn = p�kkm a.s.Hen
e: limn!1 1n GkXl=1 Z(l)k;m = limn!1 Gkn 1Gk GkXl=1 Z(l)k;m = p�kek;mkm a.s.Using again the expression (16) for r(n), it follows thatlimn!1 S1;nn = �m a.s.The 
entral limit theorem is not as straightforward. Here are the main steps.We �rst 
he
k that the ve
tor (Gk)1�k�r�1 is asymptoti
ally normal. Con-sider the ve
tor (N1; : : : ; Nr�1;Mr). Its distribution is multinomial, with parame-ters n and (p�1; : : : ; p�r�1; q�r ). From there, and formula (15), it follows that the ve
-tor (Gk)1�k�r�1 is asymptoti
ally normal (Gk essentially behaves as Nk=(km)).More pre
isely, de�ne for all k � 1epk = p�kkm and Hk = Gk � nepkpn :The distribution of the random ve
tor (Hk)1�k�r�1 
onverges to the multidimen-sional Gaussian distribution with null expe
tation ond 
ovarian
e matrix C =(
k;h)1�k;h�r�1, given by:
k;k = p�k(1� p�k)k2m2 and 
k;h = � p�kp�hkhm2 ; for k 6= h :10



For k � 1, 
onsider the partial sumeSk;m = GkXl=1 Z(l)k;m :Using the 
lassi
al te
hnique of 
hara
teristi
 fun
tions, one 
an show that thedistribution of the ve
tor� 1pn (eSk;m � nepkek;m)�1�k�r�1
onverges to the multidimensional Gaussian distribution with null expe
tation and
ovarian
e matrix D1 +D2CD2 ;where D1 and D2 are the following diagonal matri
es.D1 = Diag((epkvk;m)1�k�r�1) and D2 = Diag((ek;m)1�k�r�1) :Summing 
oordinates, it follows that S1;n is asymptoti
ally normal, for any �xedr. There remains to let r = r(n) tend to in�nity, using (16). The already givenestimates on E [S1;n ℄ and V ar[S1;n℄, yield that1pn�2m (S1;n � n�m)
onverges in distribution to the standard Gaussian distribution. �Referen
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