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ABSTRACT: In the Probabilistic Bin Packing Problem (PBPP), some
items are randomly deleted after having been placed into bins. The problem is to
rearrange the remaining items, using the a priori solution. The initial arrangement
being done with the Next Fit Decreasing heuristic, we consider two procedures.
In the first one, the NF algorithm is applied to the new list. In the second one,
successive groups of bins are optimally rearranged. In both cases, we prove a law
of large numbers and a central limit theorem for the number of occupied bins as
the initial number of items tends to infinity.

1 Introduction

Bin Packing is a classical NP-hard problem of optimization [10]: given items of
sizes (x1,...,%y,), all smaller than 1, one must pack them into bins of size 1, so as
to minimize the total number of non-empty bins. Many approximation heuristics
have been proposed and studied: see Coffman et al. [5] for a survey. We shall
focus here on the Next Fit Decreasing (NFD) heuristic [1]. Firstly the items are
ranked in decreasing order (this can be done in O(nlog(n)) time). Then they are
put into bins according to the the Next Fit algorithm: one bin is open at a time;
when a new item has to be placed, either it fits in the open bin or it does not, in
which case the current box is closed and a new one is opened (it takes O(n) time
to place the items once sorted). In the average case analysis, the item sizes are
random variables, and so is the number of non-empty bins. Its distribution has
been thoroughly studied, in particular by Csirik et al. [7, 6], Hofri and Kamhi [13]
and Rhee [17, 18] (see also section 5.2 of [11] or section 10.3 of [12]).

The idea of so called Probabilistic Combinatorial Optimisation Problems
comes from Jaillet [14, 15] who introduced it for the Traveling Salesman Prob-
lem (see also [3, 4]). The Probabilistic Bin Packing Problem (PBPP) was first
studied in [2]. The idea is the following. Assume that a list of n items has been
given, and an a priori solution (exact or approximate) has been found for the BPP.
Suppose now that some items randomly disappear from the list. Can the knowl-
edge of the a priori solution for the full list be used to construct a solution for the
reduced one? Can this be done efficiently without reopening simultaneously too
many bins of the a priori solution?

The aim of this paper is to propose an average case analysis of the PBPP,
when the a priori solution is obtained through the NFD heuristic. We shall deal
with two sources of randomness. Firstly, the initial sizes of the items are inde-
pendent and identically distributed random variables (i.i.d.r.v.’s) (Xi,...,X,).
Secondly, once they have been sorted in decreasing order and placed into bins by
the NF algorithm, a random binary decision is taken: for each i = 1,...,n the
item number i remains or disappears. To formalize this, we consider a n-tuple
(Uy,...,Uy) of i.i.d.r.v.’s, uniformly distributed on [0, 1]. The two random vectors
(Xi)i=1,...n and (U;)i=1,... n are independent. The probability for an item to stay
in the list may depend on its size: we denote by p(z) the probability for an item of



size x to stay in the list. It will be convenient to view disappearing items as objects
whose size has become null. Thus the new list of sizes is (Y7,...,Y},), where for
1=1,...,n:

Vi=Xiliui<p(xi)y >

denoting by T 4 the indicator of an event A.

If the NFD heuristic has been used for the a priori solution, an obvious proce-
dure immediately comes to mind. Since the initial items were ranked in decreasing
order, so are the remaining ones, and it is fast and natural to apply again from
scratch the NF algorithm to the list of remaining items. The average case analysis
of this procedure is proposed in section 2. The total number of bins will be proved
to satisfy a law of large numbers and a central limit theorem, and an explicit
expression for the asymptotic mean and variance will be given (theorem 2.3).

However, it is not in the spirit of Probabilistic Combinatorial Problems not
to use the a priori solution once the items have been randomly deleted. Therefore,
we shall study another heuristic. Suppose the a priori NFD solution has been
computed, its bins being numbered by order of opening. Once the items have been
randomly deleted, vacancy is left in some of the bins. The Group Rearrangement
(GR) procedure depends on a fixed integer m which is the number of bins to be
opened simultaneously. Here is the algorithm.

1. Open the bins of the a priori solution by groups of m, one group at a time:
first bins with numbers 1 to m, then m + 1 to 2m, and so on...

2. For each group of m bins, rearrange the remaining items in an optimal way.
3. Eliminate those bins that have been emptied.

The average case analysis of the GR procedure is treated in section 3. Again, a law
of large numbers and a central limit theorem for the total number of non-empty
bins will be proved (theorem 3.1).

Of course, the GR procedure is neither faster, nor better on average than the
NFD heuristic: both run in linear time, and the asymptotic mean number of bins
is larger for the former than for the latter. However, numerical evidence shows that
the difference is small. We are not able at this point to propose a similar study
for the optimal a priori solution. But we consider our NFD results as a reason to
believe that local rearrangements inside small sized groups of bins, such as in the
GR procedure, may bring a fast and relatively good solution to the PBPP, when
starting from an a priori solution, be it optimal or not.

2 PBPP by the NFD heuristic

In this section, we study the asymptotics of the total number of bins filled by the
NFD heuristic, for items of random sizes, once some of them have been randomly
deleted.

Two independent sequences of i.i.d.r.v.’s are given: (X;);>1 and (U;);>1. The
X;’s are the sizes of the original items, and the U;’s are the random variables that
decide of their deletion. The probability distribution function of the X;’s is denoted
by F and the U;’s have uniform distribution on [0,1]. A measurable function p,
from [0, 1] into itself is given. If z is an item size, p(x) is its probability to remain
in the new list. As already pointed out, it is convenient to consider deleted objects



as items of size 0. Thus the new list of item sizes after random deletions becomes
(Y3)i>1, where for all 4 > 1:

Yi = Xilqui<po(xi)y -

Notice that the Y;’s are still i.i.d.r.v.’s. Denote by A, the number of bins used
by the NFD algorithm to arrange the n items of sizes Y7, ...,Y,. The asymptotic
study of A, requires very little adaptation of the classical proof for uniformly
distributed sizes, developped by Csirik et al. [6] (see Hofri [12] section 10.3.1,
p.543 fI.). We shall review below the main arguments. We are aware of the more
precise approach of Rhee [17], who gives a much better bounding for A,, than that
of lemma 2.2. The reason why we chose Csirik et al.’s truncation technique is that
it can also be used for the GR procedure, to be treated in section 3.

The first observation is that the number of bins depends more on their types
rather than on their actual sizes.

Definition 2.1 For k > 1, an item is said to be of type k if its size x is such that

<z < !

— <z <.

~k

Thus a bin can accomodate exactly k objects of type k. To account for deletions,
we shall agree that an item of size 0 has type 0. With our probabilistic hypotheses,
the item types are i.i.d.r.v.’s with values in N. We shall denote by p = (pk)ren
their distribution. For k > 1, the probability for an item to be of type k is

=

= [ pla)dF@).

whereas its probability to be of type 0 (deletion) is
00 o]
P0=1—Zpk=1—/ p(z) dF (z) .
k=1 0

As a particular case, if the original item sizes are uniformly distributed on [0, 1]
and the function p is constant, one gets pp = 1 — p and for k& > 1:

_ P
Pe= k1)

The results that follow only depend on the distribution p.

Since the items are examined in decreasing order of size, all items of type 1
are treated first, and placed alone in as many bins. Then come type 2 items. The
first of them possibly fits in the same bin as the last type 1 item, the others are
placed 2 by 2 into new bins, and so on...It is intuitively clear that, apart from a
few “frontier” bins that may contain items of different types, most bins will host
a fixed number of items of the same type. Lemma 2.2 below gives bounds on the
number of used bins, in terms of two functions of the item types.



Lemma 2.2 Let r > 1 be an integer. Define the two functions ¢1 and ¢, from
[0, 1] into itself by:

1 - 1 1 _
o) = [ 7 0 ma<zsgp k=l
0 U‘ 0 S T S 1
r
Loyf y<a<t k=1,...,r-1,
pa2(z) = 1 if o<a<?i,
0 4 z=0.

Let y1,...,yn be n (possibly null) item sizes. Let a, be the total number of bins
required to arrange those items using the NFD heuristic. Then:

n

Y diy) —(r=1) <an <Y o) +r.

i=1 =1

Proof: For k > 1, let nj be the number of type k items. The number of bins they
will occupy is at least |5 |, where |-| denotes the integer part. Hence the lower
bound, neglecting items of size < r. For the upper bound, all items of type k < r—1
can be accomodated in at most [%%] + 1 bins, and all items of type k > r in at
most | %% | 41 bins. 0

When the input sizes are random, lemma 2.2 provides bounds on A4,, in terms of
two sums of random variables:

Z%(Yi)—(r—l)SAnSZ%(Yi)wLT- (1)

In (1), both S1,, = > ¢1(Y;) and Sa , =Y ¢2(Y;) are sums of bounded i.i.d.r.v.’s.
Their asymptotic behavior (exponential tail inequalities, law of large numbers,
central limit theorem) is described by basic results of probability theory (see [8, 9]
or [16] as general references). These can be passed to A,,, through a careful choice
of the free parameter 7.

For r > 1 denote by ¢, the tail probability for the distribution of types:

00 r—1
&= P=1-> p.
k=r k=0

We will assume that g, decreases at least as fast as some negative power of r: there
exist two positive constants ¢ and « such that for all r > 1,

g <ecr ™. (2)

This is actually an assumption on both the behavior of the size distribution F
close to 0, and the function p.

Theorem 2.3 Under the previous hypotheses, denote by u and o? the following
asymptotic mean and variance:

S

n=3y . (3)

k=1

S~



| k]

i (4)

0o
02:: E
k=1

Then the following results hold for A,,.

o

1. Exponential tail inequality: for all x >0 and n > 1,
P[|A, — np| > 2v/n|] < exp (—Q(x — Y2 9 fen TS )2) .5

2. Law of large numbers:

Ay
lim —=p as. (6)
n—oo n
3. Central limit theorem:
. 1
Jim P [m(z‘ln —np) < 93] =(z), (7)

where ® denotes the standard Gaussian probability distribution function.

For the particular case of item sizes uniformly distributed on [0, 1] and a con-
stant value of p, the asymptotic mean and variance can be expressed in terms of
Riemann’s Zeta function:
1
C(w) =" -

i=1
One gets:
p=p(2)—1)=0.645p,
nd:
’ o2 =p(C(3) = ¢(2) +1) = p? (¢(2) —1)* ~ 0.557 p — 0.416 p* .

Proof: For j = 1,2, we shall denote by p; the expectation of ¢;(Y;), and by crjz. its
variance:

r—1 r—1
Dk Pk q

lh:Z? ; H2:Z?+TT7

k=1 k=1
r—1 p r—1 p q

k k

or=) mTH 3= ) St

k=1 k=1

Obviously as r tends to infinity, u; and ps tend to u, whereas o7 and o3 tend to

o?. From (1), the following bounds on the PDF of A,, are easily deduced.
P[So,n —npe <@+ 1+ nl] <P[A, —np < a]
(8)

<PSin—np <z —r—ni].

As sums of bounded i.i.d.r.v.’s, both S; ,, and Ss ,, satisfy classical exponential tail
inequalities, such as Hoeffding’s [16]:

P[|S).n — nuj| > zv/n] < 2727 |



Both also satisfy the central limit theorem:

. 1 x
Jim P %(Sj,n—nﬂj) <z —‘I’(U—j)-

To derive from (8) the corresponding results for A,,, one needs to let the parameter
r tend to infinity, as a function of n. Recall from (2) that ¢, < er=®. For all n > 1,
we set 7 = r(n) as follows:

r(n) = [Ven™= | +1. (9)

One readily checks that:

n I o Jenme
r(n) ~

From there, (5) easily follows from Hoeffding’s inequality applied to S, and Ss .
To derive the strong law of large numbers from an exponential inequality such
as (5) is an easy application of the Borel-Cantelli lemma. For the central limit
theorem (7), one just has to divide variables by +/n in (8), and let n tend to

infinity: with our choice of r(n), both L\/%) and L)(") tend to 0. ad

qr
r(n

3 The Group Rearrangement procedure

We now turn to the GR procedure, in which bins are taken by groups of m, each
group being optimally rearranged after deletions. As we saw before, in the a priori
solution most bins contain items of the same type. Therefore, most groups of bins
will be homogeneous in the sense that each bin of the group contains exactly &
items of type k; let us call “k-group” such a group of m bins. We need to restrict
slightly our assumption on the function p: we assume now that it is constant for
objects of the same type, and denote by pj the probability for an item of type k
to remain in the list.

Consider a k-group. The number of remaining items in all its m bins, has
binomial distribution with parameters mk and p;. Let us denote by mg ., =
(Tk,m (%))i=0,...,m the probability distribution of the number of remaining bins,
once the k-group has been rearranged:

(1—pk)mk fori=20 s
T (1) = x k
" Z <n; )pi(l—pk)mkl fori=1,...,m.
I=(i—1)k+1

The expectation and the variance of = ,, will be denoted by e, and vy, re-
spectively.

m m
€k,m = Zlﬂ'k’m(z) and Vi,m = 2712 Tk,m (Z) - ei,m :
i=0 i=0



Let p; be the initial proportion of type k items: for £ > 1,

1 1

v = F(3) = P

We shall make the same assumption on the tail of p* as we did for p: there exist
two positive constants ¢ and « such that for all r > 1,

o0
qr = sz <er®. (10)
k=r

Let By, be the number of remaining bins after the GR procedure. The asymp-
totics of By, is described in the following result.

Theorem 3.1 Under the previous hypotheses, denote by i, and o2, the following
asymptotic mean and variance.

[oe]
€k.m
= il 11
Hm = Pk (11)
k=1
— Uk, e
* ,m ,m
k=1

Then the following results hold for By, ,.

1. Law of large numbers:

Bn m
lim — =l Q.S (13)
n—oo N
2. Central limit theorem:
. 1
lim P (Brm — npm) < z| = ®(x) . (14)

n—00 . /nagn

Essentially, B, ., behaves asymptotically as a sum of n i.i.d.r.v.’s, each having ex-
pectation p,, and variance o2,; they can be viewed as the individual contributions
of the original n items to the final packing. Indeed, for n large, a typical item
belongs to a k-group with probability pj. The contribution of km such items (one
k-group) to By, m has expectation ey, ,,, and variance vy, ,; hence each contribution

should have expectation 5=, and variance %= . Thus the expected squared con-
2
tribution of an object of type k should be v,;“n’]; + :;“;;Z So o2, can be seen as the

variance for the contribution of a typical item to By, ,.

Clearly, as m increases, the space wasted by the GR procedure compared
to the NFD heuristic diminishes. In particular, the asymptotic expectation i,
defined by (11) tends to p. One may wonder what is the difference for small values
of m. To get a partial answer, we computed numerically p,, — pu, for m =2...,5,
in the particular case where the item sizes are uniformly distributed on [0, 1] and
the probability p is a constant. Figure 1 shows a plot of u,, — i as a function of p.



It turns out that the difference between the global algorithm (NFD) and the local
one (GR) is relatively small, even for m = 2. In order to understand why, let us fix
m and py,, and look at the asymptotic behavior of ey, ,,, as k increases. The law of
large numbers implies that ey ,, converges to ¢ for all values of pj, in the interval
]%, #], ¢ ranging from 1 to m. In other terms, as k increases, ej,,, approaches
mpy ] + 1. So py, is actually close to the following sum :

to be compared with
o0
NPk
B = ];pk L

This also accounts for the modes in p,,, — u, plotted as a function of p (figure 1).
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Figure 1: Asymptotic difference between the NFD heuristic and the GR procedure,
form =2,...,5.

Proof: Controlling By, ,,, by sums of independent random variables is not as straight-
forward as for A, though a similar truncation technique will be used. We shall
first describe the lower bound, then the upper bound.

To get a lower bound, we restrict ourselves to k-groups, with k < r: B,, y, is
certainly larger than the number of remaining bins after rearrangement of those
k-groups, and suppression of all other groups. Denote by Nj the number of items
of type k in the original list: the distribution of N, is binomial with parameters n
and pj. If there are N}, items of type k, then the number of k-groups is certainly
larger than

1 N
Gi =1 (15 - 1) - 1. (15)

For all £ > 1, consider independent sequences of i.i.d.r.v.’s (Zr(?i),k)lzl’ all indepen-



dent from the X;’s, where Zr(rll)k has distribution 7, ;. Define S; ,, as the sum

r—1 Gg

Sin=>.3 29,

k=1 1[=1

The previous reasoning shows that Sj , is smaller than B, ,, in the stochastic
ordering sense: for all z,

P[Si,n < 2] > P[Bym < 2] .

As in the proof of theorem 2.3, we need to control the difference between npu,,, and
E[S1,,]- By Wald’s theorem, one has

Sln] ZEGk ekm.

By definition of G, one has

1 (E[Ni] npy 2
> (2R o) o PPk 2
EG] > — ( - 2) 2=2 = 9

Remarking that ey, < m for all k, one gets

r—1 * e’} *

npk npk

Npm — E[SLn] = g €k,m <— - E[Gk]> + 5 Ckom7
k=1 km k=r km

IN

Zekm< +2>+Zekm—

< (r—1)(2+2m) + ”;f .

Under (10), the same choice of r(n) as in the proof of theorem 2.3 ensures that
this difference is small compared to /n:

r(n) = [Ven®= | +1. (16)
We also need to check that Var[S; ,,] — noZ, = o(n). One has:

r—1 r—1
Var[Sin] = > ElGr]vkm + Var[Grle} . + Y. Cov[Gi,Ghlermenm -
k=1 k#h=1

Using the definition (15) of G, one easily gets:

BlG] = 2 4+ 0(1) , Varie] = R 4 o),

CovlGh,G] = ’;kag +0(1) .




From this one deduces:

r—1 2 r—1 2
— « [ Vkm  Ckom | x €k,m 2
Var($i,] = n;pk( el k2m2> n@pk km) +0(r%)

= no2 +o(n),

still using expression (16) for r(n).

Let us now turn to the upper bound. The number of remaining bins By, ,
certainly increases if one neglects to rearrange non homogeneous groups. It also
increases if all items of size < 1/r are replaced by items of size 1/r in the original
list and none of them disappears. Let M, denote the number of items of type > r.
The upperbound S, , is the following:

Son = Sip+ (Mp/r+1m).

One has for all z:
]P[Bmm S ZL'] Z ]P[SQ,n S CU] .

As before, one can check that E[Ss ] = njis, +0(y/n) and Var[Ss ] = no2, +o(n).

To finish the proof along the same lines as that of theorem 2.3, we need to
check that the law of large numbers and the central limit theorem hold for S ),
and S5, which are sums of random numbers of r.v.’s. We shall do it for S; p;
similar arguments hold for S5 ,. The law of large numbers is the easy part. By
formula (15), G}, increases a.s. to infinity and

. Gr _
im — = a.s
n—oo n km
Hence: . .
R AR Gy 1R L0 Piekm
Jin g 2 Zem = Jim S 2 Zem = T
Using again the expression (16) for r(n), it follows that
. Sl,n
lim —— =pu,, as.
n—o0 n

The central limit theorem is not as straightforward. Here are the main steps.

We first check that the vector (G)i<k<r—1 is asymptotically normal. Con-
sider the vector (N1, ..., N._1, M,). Its distribution is multinomial, with parame-
ters n and (pf,...,pi_;,qr). From there, and formula (15), it follows that the vec-
tor (Gr)i<k<r—1 is asymptotically normal (G} essentially behaves as Ny /(km)).
More precisely, define for all k£ > 1

- Di G — npr
= and Hp = ——.

Pk T k NG

The distribution of the random vector (Hy)i<k<r—1 converges to the multidimen-

sional Gaussian distribution with null expectation ond covariance matrix C =
(Ck,h)1<k,h<r—1, given by:

*(1 — p* % ok
ck’kzw and ck,h:—]fif;'g,fork#h.



For k > 1, consider the partial sum
~ Gk
Shm = Z1, .
=1

Using the classical technique of characteristic functions, one can show that the
distribution of the vector

converges to the multidimensional Gaussian distribution with null expectation and
covariance matrix

1<k<r—1

Dy + D>CD, ,
where D; and D5 are the following diagonal matrices.
Dy = Diag((prvk,m)i<k<r—1) and Da = Diag((ex,m)i<k<r—1) -

Summing coordinates, it follows that S; , is asymptotically normal, for any fixed
r. There remains to let » = r(n) tend to infinity, using (16). The already given
estimates on E[S; ,] and Var[Sy ], yield that

1

> (S1,n — nftm)
\/no,
converges in distribution to the standard Gaussian distribution. O
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