
Average ase analysis for the Probabilisti BinPaking ProblemM. Bellalouna, S. Souissi, and B. YartABSTRACT: In the Probabilisti Bin Paking Problem (PBPP), someitems are randomly deleted after having been plaed into bins. The problem is torearrange the remaining items, using the a priori solution. The initial arrangementbeing done with the Next Fit Dereasing heuristi, we onsider two proedures.In the �rst one, the NF algorithm is applied to the new list. In the seond one,suessive groups of bins are optimally rearranged. In both ases, we prove a lawof large numbers and a entral limit theorem for the number of oupied bins asthe initial number of items tends to in�nity.1 IntrodutionBin Paking is a lassial NP-hard problem of optimization [10℄: given items ofsizes (x1; : : : ; xn), all smaller than 1, one must pak them into bins of size 1, so asto minimize the total number of non-empty bins. Many approximation heuristishave been proposed and studied: see Co�man et al. [5℄ for a survey. We shallfous here on the Next Fit Dereasing (NFD) heuristi [1℄. Firstly the items areranked in dereasing order (this an be done in O(n log(n)) time). Then they areput into bins aording to the the Next Fit algorithm: one bin is open at a time;when a new item has to be plaed, either it �ts in the open bin or it does not, inwhih ase the urrent box is losed and a new one is opened (it takes O(n) timeto plae the items one sorted). In the average ase analysis, the item sizes arerandom variables, and so is the number of non-empty bins. Its distribution hasbeen thoroughly studied, in partiular by Csirik et al. [7, 6℄, Hofri and Kamhi [13℄and Rhee [17, 18℄ (see also setion 5.2 of [11℄ or setion 10.3 of [12℄).The idea of so alled Probabilisti Combinatorial Optimisation Problemsomes from Jaillet [14, 15℄ who introdued it for the Traveling Salesman Prob-lem (see also [3, 4℄). The Probabilisti Bin Paking Problem (PBPP) was �rststudied in [2℄. The idea is the following. Assume that a list of n items has beengiven, and an a priori solution (exat or approximate) has been found for the BPP.Suppose now that some items randomly disappear from the list. Can the knowl-edge of the a priori solution for the full list be used to onstrut a solution for theredued one? Can this be done eÆiently without reopening simultaneously toomany bins of the a priori solution?The aim of this paper is to propose an average ase analysis of the PBPP,when the a priori solution is obtained through the NFD heuristi. We shall dealwith two soures of randomness. Firstly, the initial sizes of the items are inde-pendent and identially distributed random variables (i.i.d.r.v.'s) (X1; : : : ; Xn).Seondly, one they have been sorted in dereasing order and plaed into bins bythe NF algorithm, a random binary deision is taken: for eah i = 1; : : : ; n theitem number i remains or disappears. To formalize this, we onsider a n-tuple(U1; : : : ; Un) of i.i.d.r.v.'s, uniformly distributed on [0; 1℄. The two random vetors(Xi)i=1;:::;n and (Ui)i=1;:::;n are independent. The probability for an item to stayin the list may depend on its size: we denote by �(x) the probability for an item of1



size x to stay in the list. It will be onvenient to view disappearing items as objetswhose size has beome null. Thus the new list of sizes is (Y1; : : : ; Yn), where fori = 1; : : : ; n: Yi = Xi IfUi��(Xi)g ;denoting by IA the indiator of an event A.If the NFD heuristi has been used for the a priori solution, an obvious proe-dure immediately omes to mind. Sine the initial items were ranked in dereasingorder, so are the remaining ones, and it is fast and natural to apply again fromsrath the NF algorithm to the list of remaining items. The average ase analysisof this proedure is proposed in setion 2. The total number of bins will be provedto satisfy a law of large numbers and a entral limit theorem, and an expliitexpression for the asymptoti mean and variane will be given (theorem 2.3).However, it is not in the spirit of Probabilisti Combinatorial Problems notto use the a priori solution one the items have been randomly deleted. Therefore,we shall study another heuristi. Suppose the a priori NFD solution has beenomputed, its bins being numbered by order of opening. One the items have beenrandomly deleted, vaany is left in some of the bins. The Group Rearrangement(GR) proedure depends on a �xed integer m whih is the number of bins to beopened simultaneously. Here is the algorithm.1. Open the bins of the a priori solution by groups of m, one group at a time:�rst bins with numbers 1 to m, then m+ 1 to 2m, and so on. . .2. For eah group of m bins, rearrange the remaining items in an optimal way.3. Eliminate those bins that have been emptied.The average ase analysis of the GR proedure is treated in setion 3. Again, a lawof large numbers and a entral limit theorem for the total number of non-emptybins will be proved (theorem 3.1).Of ourse, the GR proedure is neither faster, nor better on average than theNFD heuristi: both run in linear time, and the asymptoti mean number of binsis larger for the former than for the latter. However, numerial evidene shows thatthe di�erene is small. We are not able at this point to propose a similar studyfor the optimal a priori solution. But we onsider our NFD results as a reason tobelieve that loal rearrangements inside small sized groups of bins, suh as in theGR proedure, may bring a fast and relatively good solution to the PBPP, whenstarting from an a priori solution, be it optimal or not.2 PBPP by the NFD heuristiIn this setion, we study the asymptotis of the total number of bins �lled by theNFD heuristi, for items of random sizes, one some of them have been randomlydeleted.Two independent sequenes of i.i.d.r.v.'s are given: (Xi)i�1 and (Ui)i�1. TheXi's are the sizes of the original items, and the Ui's are the random variables thatdeide of their deletion. The probability distribution funtion of the Xi's is denotedby F and the Ui's have uniform distribution on [0; 1℄. A measurable funtion �,from [0; 1℄ into itself is given. If x is an item size, �(x) is its probability to remainin the new list. As already pointed out, it is onvenient to onsider deleted objets2



as items of size 0. Thus the new list of item sizes after random deletions beomes(Yi)i�1, where for all i � 1: Yi = Xi IfUi��(Xi)g :Notie that the Yi's are still i.i.d.r.v.'s. Denote by An the number of bins usedby the NFD algorithm to arrange the n items of sizes Y1; : : : ; Yn. The asymptotistudy of An requires very little adaptation of the lassial proof for uniformlydistributed sizes, developped by Csirik et al. [6℄ (see Hofri [12℄ setion 10.3.1,p.543 �.). We shall review below the main arguments. We are aware of the morepreise approah of Rhee [17℄, who gives a muh better bounding for An than thatof lemma 2.2. The reason why we hose Csirik et al.'s trunation tehnique is thatit an also be used for the GR proedure, to be treated in setion 3.The �rst observation is that the number of bins depends more on their typesrather than on their atual sizes.De�nition 2.1 For k � 1, an item is said to be of type k if its size x is suh that1k + 1 < x � 1k :Thus a bin an aomodate exatly k objets of type k. To aount for deletions,we shall agree that an item of size 0 has type 0. With our probabilisti hypotheses,the item types are i.i.d.r.v.'s with values in N. We shall denote by p = (pk)k2Ntheir distribution. For k � 1, the probability for an item to be of type k ispk = Z 1k1k+1 �(x) dF (x) ;whereas its probability to be of type 0 (deletion) isp0 = 1� 1Xk=1 pk = 1� Z 10 �(x) dF (x) :As a partiular ase, if the original item sizes are uniformly distributed on [0; 1℄and the funtion � is onstant, one gets p0 = 1� � and for k � 1:pk = �k(k + 1) :The results that follow only depend on the distribution p.Sine the items are examined in dereasing order of size, all items of type 1are treated �rst, and plaed alone in as many bins. Then ome type 2 items. The�rst of them possibly �ts in the same bin as the last type 1 item, the others areplaed 2 by 2 into new bins, and so on. . . It is intuitively lear that, apart from afew \frontier" bins that may ontain items of di�erent types, most bins will hosta �xed number of items of the same type. Lemma 2.2 below gives bounds on thenumber of used bins, in terms of two funtions of the item types.
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Lemma 2.2 Let r � 1 be an integer. De�ne the two funtions �1 and �2, from[0; 1℄ into itself by:�1(x) = � 1k if 1k+1 < x � 1k ; k = 1; : : : ; r�1 ;0 if 0 � x � 1r�2(x) = 8<: 1k if 1k+1 < x � 1k ; k = 1; : : : ; r�1 ;1r if 0 < x � 1r ;0 if x = 0 :Let y1; : : : ; yn be n (possibly null) item sizes. Let an be the total number of binsrequired to arrange those items using the NFD heuristi. Then:nXi=1 �1(yi)� (r � 1) � an � nXi=1 �2(yi) + r :Proof: For k � 1, let nk be the number of type k items. The number of bins theywill oupy is at least bnkk , where b� denotes the integer part. Hene the lowerbound, negleting items of size � r. For the upper bound, all items of type k � r�1an be aomodated in at most bnkk  + 1 bins, and all items of type k � r in atmost bnkr + 1 bins. �When the input sizes are random, lemma 2.2 provides bounds on An in terms oftwo sums of random variables:nXi=1 �1(Yi)� (r � 1) � An � nXi=1 �2(Yi) + r : (1)In (1), both S1;n =P�1(Yi) and S2;n =P�2(Yi) are sums of bounded i.i.d.r.v.'s.Their asymptoti behavior (exponential tail inequalities, law of large numbers,entral limit theorem) is desribed by basi results of probability theory (see [8, 9℄or [16℄ as general referenes). These an be passed to An, through a areful hoieof the free parameter r.For r � 1 denote by qr the tail probability for the distribution of types:qr = 1Xk=r pk = 1� r�1Xk=0 pk :We will assume that qr dereases at least as fast as some negative power of r: thereexist two positive onstants  and � suh that for all r � 1,qr � r�� : (2)This is atually an assumption on both the behavior of the size distribution Flose to 0, and the funtion �.Theorem 2.3 Under the previous hypotheses, denote by � and �2 the followingasymptoti mean and variane: � = 1Xk=1 pkk : (3)4



�2 = 1Xk=1 pkk2 � �2 : (4)Then the following results hold for An.1. Exponential tail inequality: for all x > 0 and n � 1,P[ jAn � n�j � xpnj ℄ � exp��2(x� n�1=2 � 2p n� �2(2+�) )2� : (5)2. Law of large numbers: limn!1 Ann = � a.s. (6)3. Central limit theorem:limn!1P � 1pn�2 (An � n�) � x� = �(x) ; (7)where � denotes the standard Gaussian probability distribution funtion.For the partiular ase of item sizes uniformly distributed on [0; 1℄ and a on-stant value of �, the asymptoti mean and variane an be expressed in terms ofRiemann's Zeta funtion: �(u) = 1Xi=1 1nu :One gets: � = � (�(2)� 1) ' 0:645 � ;and: �2 = � (�(3)� �(2) + 1)� �2 (�(2) � 1)2 ' 0:557 �� 0:416 �2 :Proof: For j = 1; 2, we shall denote by �j the expetation of �j(Yi), and by �2j itsvariane: �1 = r�1Xk=1 pkk ; �2 = r�1Xk=1 pkk + qrr ;�21 = r�1Xk=1 pkk2 � �21 ; �22 = r�1Xk=1 pkk2 + qrr2 � �22 :Obviously as r tends to in�nity, �1 and �2 tend to �, whereas �21 and �22 tend to�2. From (1), the following bounds on the PDF of An are easily dedued.P[S2;n � n�2 � x+ r + n qrr ℄ � P[An � n� � x℄� P[S1;n � n�1 � x� r � n qrr ℄ : (8)As sums of bounded i.i.d.r.v.'s, both S1;n and S2;n satisfy lassial exponential tailinequalities, suh as Hoe�ding's [16℄:P[jSj;n � n�j j � zpn℄ � 2e�2z2 :5



Both also satisfy the entral limit theorem:limn!1P � 1pn (Sj;n � n�j) � x� = �( x�j ) :To derive from (8) the orresponding results for An, one needs to let the parameterr tend to in�nity, as a funtion of n. Reall from (2) that qr � r��. For all n � 1,we set r = r(n) as follows: r(n) = bp n 12+� + 1 : (9)One readily heks that: nqr(n)r(n) � p n 12+� :From there, (5) easily follows from Hoe�ding's inequality applied to S1;n and S2;n.To derive the strong law of large numbers from an exponential inequality suhas (5) is an easy appliation of the Borel-Cantelli lemma. For the entral limittheorem (7), one just has to divide variables by pn in (8), and let n tend toin�nity: with our hoie of r(n), both r(n)pn and pn qr(n)r(n) tend to 0. �3 The Group Rearrangement proedureWe now turn to the GR proedure, in whih bins are taken by groups of m, eahgroup being optimally rearranged after deletions. As we saw before, in the a priorisolution most bins ontain items of the same type. Therefore, most groups of binswill be homogeneous in the sense that eah bin of the group ontains exatly kitems of type k; let us all \k-group" suh a group of m bins. We need to restritslightly our assumption on the funtion �: we assume now that it is onstant forobjets of the same type, and denote by �k the probability for an item of type kto remain in the list.Consider a k-group. The number of remaining items in all its m bins, hasbinomial distribution with parameters mk and �k. Let us denote by �k;m =(�k;m(i))i=0;:::;m the probability distribution of the number of remaining bins,one the k-group has been rearranged:�k;m(i) = 8>>><>>>: (1� �k)mk for i = 0 ;ikXl=(i�1)k+1�mkl ��lk(1� �k)mk�l for i = 1; : : : ;m :The expetation and the variane of �k;m will be denoted by ek;m and vk;m re-spetively. ek;m = mXi=0 i �k;m(i) and vk;m = mXi=0 i2 �k;m(i)� e2k;m :6



Let p�k be the initial proportion of type k items: for k � 1,p�k = F ( 1k )� F ( 1k + 1) :We shall make the same assumption on the tail of p� as we did for p: there existtwo positive onstants  and � suh that for all r � 1,q�r = 1Xk=r p�k � r�� : (10)Let Bn;m be the number of remaining bins after the GR proedure. The asymp-totis of Bn;m is desribed in the following result.Theorem 3.1 Under the previous hypotheses, denote by �m and �2m the followingasymptoti mean and variane.�m = 1Xk=1 p�k ek;mkm ; (11)�2m = 1Xk=1 p�k vk;mkm + e2k;mk2m2! � �2m : (12)Then the following results hold for Bn;m.1. Law of large numbers: limn!1 Bn;mn = �m a.s. (13)2. Central limit theorem:limn!1P" 1pn�2m (Bn;m � n�m) � x# = �(x) : (14)Essentially, Bn;m behaves asymptotially as a sum of n i.i.d.r.v.'s, eah having ex-petation �m and variane �2m; they an be viewed as the individual ontributionsof the original n items to the �nal paking. Indeed, for n large, a typial itembelongs to a k-group with probability p�k. The ontribution of km suh items (onek-group) to Bn;m has expetation ek;m and variane vk;m; hene eah ontributionshould have expetation ek;mkm , and variane vk;mkm . Thus the expeted squared on-tribution of an objet of type k should be vk;mkm + e2k;mk2m2 . So �2m an be seen as thevariane for the ontribution of a typial item to Bn;m.Clearly, as m inreases, the spae wasted by the GR proedure omparedto the NFD heuristi diminishes. In partiular, the asymptoti expetation �mde�ned by (11) tends to �. One may wonder what is the di�erene for small valuesof m. To get a partial answer, we omputed numerially �m � �, for m = 2 : : : ; 5,in the partiular ase where the item sizes are uniformly distributed on [0; 1℄ andthe probability � is a onstant. Figure 1 shows a plot of �m�� as a funtion of �.7



It turns out that the di�erene between the global algorithm (NFD) and the loalone (GR) is relatively small, even for m = 2. In order to understand why, let us �xm and �k, and look at the asymptoti behavior of ek;m as k inreases. The law oflarge numbers implies that ek;m onverges to i for all values of �k in the interval℄ i�1m ; im ℄, i ranging from 1 to m. In other terms, as k inreases, ek;m approahesbm�k+ 1. So �m is atually lose to the following sum :�m ' 1Xk=1 p�k bm�k+ 1km ;to be ompared with � = 1Xk=1 p�k �kk :This also aounts for the modes in �m � �, plotted as a funtion of � (�gure 1).
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dent from the Xi's, where Z(l)m;k has distribution �m;k. De�ne S1;n as the sumS1;n = r�1Xk=1 GkXl=1 Z(l)m;k :The previous reasoning shows that S1;n is smaller than Bn;m in the stohastiordering sense: for all x, P[S1;n � x℄ � P[Bn;m � x℄ :As in the proof of theorem 2.3, we need to ontrol the di�erene between n�m andE [S1;n ℄. By Wald's theorem, one hasE [S1;n ℄ = r�1Xk=1 E [Gk ℄ ek;m :By de�nition of Gk, one hasE [Gk ℄ � 1m �E [Nk ℄k � 2�� 2 = np�kkm � 2m � 2 :Remarking that ek;m � m for all k, one getsn�m � E [S1;n ℄ = r�1Xk=1 ek;m�np�kkm � E [Gk ℄�+ 1Xk=r ek;mnp�kkm� r�1Xk=1 ek;m� 2m + 2�+ 1Xk=r ek;mnp�krm� (r�1)(2 + 2m) + nq�rr :Under (10), the same hoie of r(n) as in the proof of theorem 2.3 ensures thatthis di�erene is small ompared to pn:r(n) = bp n 12+� + 1 : (16)We also need to hek that V ar[S1;m℄� n�2m = o(n). One has:V ar[S1;n℄ = r�1Xk=1 E [Gk ℄ vk;m + V ar[Gk ℄ e2k;m + r�1Xk 6=h=1Cov[Gk ; Gh℄ ek;meh;m :Using the de�nition (15) of Gk, one easily gets:E [Gk ℄ = np�kkm +O(1) ; V ar[Gk ℄ = np�k(1� p�k)k2m2 +O(1) ;Cov[Gk ; Gh℄ = �np�kp�hkhm2 + O(1) :9



From this one dedues:V ar[S1;n℄ = n r�1Xk=1 p�k vk;mkm + e2k;mk2m2! � n r�1Xk=1 p�k ek;mkm !2 +O(r2)= n�2m + o(n) ;still using expression (16) for r(n).Let us now turn to the upper bound. The number of remaining bins Bn;mertainly inreases if one neglets to rearrange non homogeneous groups. It alsoinreases if all items of size � 1=r are replaed by items of size 1=r in the originallist and none of them disappears. Let Mr denote the number of items of type � r.The upperbound S2;n is the following:S2;n = S1;n + (Mr=r + rm) :One has for all x: P[Bn;m � x℄ � P[S2;n � x℄ :As before, one an hek that E [S2;n ℄ = n�m+o(pn) and V ar[S2;n℄ = n�2m+o(n).To �nish the proof along the same lines as that of theorem 2.3, we need tohek that the law of large numbers and the entral limit theorem hold for S1;nand S2;n, whih are sums of random numbers of r.v.'s. We shall do it for S1;n;similar arguments hold for S2;n. The law of large numbers is the easy part. Byformula (15), Gk inreases a.s. to in�nity andlimn!1 Gkn = p�kkm a.s.Hene: limn!1 1n GkXl=1 Z(l)k;m = limn!1 Gkn 1Gk GkXl=1 Z(l)k;m = p�kek;mkm a.s.Using again the expression (16) for r(n), it follows thatlimn!1 S1;nn = �m a.s.The entral limit theorem is not as straightforward. Here are the main steps.We �rst hek that the vetor (Gk)1�k�r�1 is asymptotially normal. Con-sider the vetor (N1; : : : ; Nr�1;Mr). Its distribution is multinomial, with parame-ters n and (p�1; : : : ; p�r�1; q�r ). From there, and formula (15), it follows that the ve-tor (Gk)1�k�r�1 is asymptotially normal (Gk essentially behaves as Nk=(km)).More preisely, de�ne for all k � 1epk = p�kkm and Hk = Gk � nepkpn :The distribution of the random vetor (Hk)1�k�r�1 onverges to the multidimen-sional Gaussian distribution with null expetation ond ovariane matrix C =(k;h)1�k;h�r�1, given by:k;k = p�k(1� p�k)k2m2 and k;h = � p�kp�hkhm2 ; for k 6= h :10
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