Una
ley de
probabilidad
,
o distribución de
probabilidad, es una función
que a un evento
asocia un
número
, su
probabilidad.
Este número
traduce la oportunidad que tiene el evento de
producirse. La forma más intuitiva de definir una tal función es
repetir el experimento aleatorio y asociar a cada
evento su
frecuencia experimental.
. Si
es el número de experimentos,
el
número de veces que se produce el evento
, la frecuencia
experimental de
es la razón
. Aquí tenemos, como
ejemplo,
repeticiones de un experimento cuyas eventualidades
son 0,
y
.
En este ejemplo la frecuencia experimental de es
,
la de
es
. El inconveniente es que la frecuencia
experimental cambiará si rehacemos los
experimentos. En otras
palabras el conjunto de las
repeticiones constituye un nuevo
experimento aleatorio. Sin embargo todos tenemos en nuestra mente
una idea de la
Ley
de los Grandes Números
según la cual las frecuencias experimentales
varían poco cuando el número de repeticiones es grande. Veamos
cuatro cálculos sucesivos de la frecuencia experimental de
, en
repeticiones del mismo experimento anterior.
Las propiedades que esperamos de una ley de probabilidad son las mismas que las de las frecuencias experimentales. Las consideraremos como los axiomas de la definición.
Una consecuencia inmediata de los axiomas A2 y A3 es
la relación entre la probabilidad de un evento y la de su
opuesto, denotado
.
Las
leyes de probabilidad
que se emplean en la práctica son de
dos tipos particulares, las leyes discretas y las leyes continuas.
1.
Leyes discretas
El conjunto de las eventualidades es finito o numerable:
Todas las partes de son eventos. Como todo evento es una
reunión finita o numerable de eventos individuales o aislados
(singleton), es suficiente definir la probabilidad de cada
singleton:
Ejemplo: Si el conjunto de los
resultados es finito
y
si no hay información que nos permita diferenciar unos resultados
de otros, es natural asociar a cada eventualidad la probabilidad
. La probabilidad de todo evento
es entonces Card
.
Esta probabilidad particular se llama la equiprobabilidad. En este caso todos los cálculos se convierten en contar:
El conjunto de las eventualidades es
. Los eventos
son los intervalos, y todos los subconjuntos de
que se
pueden formar combinando intersecciones y uniones de intervalos.
En la teoría de la medida se les llama conjuntos borelianos.
Dada una
densidad
de probabilidad, se define una ley de
probabilidad sobre
, asociando a todo evento
el valor de
la integral de la densidad sobre este evento:
Ejemplo:
Para el experimento aleatorio que consiste en sacar al azar un
número real en el intervalo (llamar a
Random
),
consideraremos sobre
la ley de probabilidad continua de
densidad:
Ella asigna a todo intervalo contenido en una probabilidad
igual a su longitud.
Como sucede en el ejemplo
anterior, es frecuente que una densidad sea estrictamente positiva
sobre un intervalo (eventualmente no acotado) de
, y nula
fuera. El intervalo en el cual
es estrictamente positiva se
llama el soporte de la ley.
Podemos ver una probabilidad como una distribución de
masa en el conjunto de las eventualidades. La masa total vale .
En el caso discreto, ella se encuentra repartida en cada
eventualidad como en ``granos de plomo'' separados. En el caso
continuo, ella está repartida sobre todo un intervalo de
,
que es como un hilo de masa
en el cual la densidad de la masa
es variable. Calcular la probabilidad de un evento es calcular su
masa. Aparte de esta analogía, ¿qué sentido práctico tiene la
noción de probabilidad? ¿Podemos medir físicamente probabilidades?
El único sentido concreto que les podemos dar es, intuitivamente,
el de la
Ley
de los Grandes Números.
``Cara tiene una posibilidad
sobre dos de suceder'' significa para nosotros que ``si lanzo la
moneda una gran cantidad de veces, Cara saldrá alrededor de una
vez de cada dos.''
Intuición: La probabilidad de un evento
es el límite de sus
frecuencias experimentales
en un gran número
de experimentos
independientes.
Esta idea
intuitiva conlleva varios puntos oscuros. Que las frecuencias
experimentales convergen bajo ciertas hipótesis es un teorema
(este teorema es el que lleva el nombre de Ley de los Grandes
Números). ¿Por qué añadir el adjetivo ``independientes''?
Imaginemos una máquina de
precisión para lanzar monedas: un brazo articulado dotado de un
plato, unido a un muelle regulable, ajustado a un valor fijo.
Pongamos el muelle en tensión y depositemos una moneda
en el plato, con la Cara hacia arriba y soltemos el muelle. La
primera vez no podremos prever si la moneda caerá de Cara o Cruz,
pero la información que obtenemos en el resultado del primer
ensayo permitirá predecir los siguientes: los experimentos no son
independientes. Las frecuencias experimentales valdrán ó 0
pero no brindarán ninguna información sobre si la moneda está
adulterada o no.
El objetivo principal del próximo parrafo es precisar las nociones de dependencia e independenciaide eventos y de experimentos aleatorios.