Statistics for the Luria-Delbriick distribution:
using the R functions

A. Hamon and B. Ycart
March 15, 2012

1 Foreword

1.1 You have never used R

1. Download and install R from http://www.r-project.org/;

2. download LD.R from
http://1jk.imag.fr/Membres/Bernard.Ycart/LD/ and save it to your disk.

3. launch a R terminal or interface and source the LD.R script, either through the
interface or directly by a line of command. For Windows users:

> source("C:\\path\\directory\\LD.R")
For Linux users:
> source("~/path/directory/LD.R")

The functions are ready to use. The prompt is >. Type a command after it, then
return. Recall previous commands by |1 | and . Start with a few simulations to see
what random samples look like:

> rLD(10,1,1)
[1] 1223 1 0 6 0 2 0 5 2
> rLD(10,1,0.5)
[1] 0 0 4 6 1633 2 2 1 1 2
> rLD(10,10,0.5)
[1] 16109 577 60 59 1211 113795 423 332 108 123
> rLD(10,10,2)
[1] 36 13 9 20 12 14 62 11 19 28

You can type several commands in a same line, separated by a semi-column.

> n<-1000; a<-20; r<-0.8; S<-rLD(n,a,r)

1

http://www.r-project.org/
http://ljk.imag.fr/Membres/Bernard.Ycart/LD/

This affects the value 1000 to n (the sample size), 20 to a (the mean number of
mutations «), and 0.8 to r (the fitness p). You now have a sample of size 1000 of the
LD(20,0.8). You can display it by simply typing S after the prompt. You can get its
lower and higher values, its quartiles, etc.

> ¢(min(8) ,max(8))

[1] 16 584202

> quantile(S,c(0.25,0.5,0.75))
25% 50% 75%

79.0 145.5 316.0

You can also count how many values are higher than 500 (500 is the default Win-
sorizing value in the Maximum Likelihood estimation procedure):

> length(which(S>500))
[1] 146

The Generating Function estimates of a and p are given by:

> GF.est(8)
[1] 19.9284288 0.8026976

You can get confidence intervals for o and p:

> GF.confint(S)

2.5 % 97.5 %
alpha 18.7608463 21.0960112
rho 0.7739842 0.8314111

You can compute the Maximum Likelihood estimates, but for a large «, the result

will be biased:

> ML.est(S)
[,1]

[1,] 21.6293118

[2,] 0.8532976

You can change the Winsorization parameter: the higher win, the better the esti-
mates, but the longer the execution.

> ML.est(S,win=1000)
[,1]

[1,] 20.5886809

[2,] 0.8229966

You can also test hypotheses. The testing functions return p-values for one sided
tests. For instance: is p significantly larger than 0.757

> GF.test.rho(S,0.75)
[1] 0.0004834452

Is « significantly lower than 217

> GF.test.alpha(S,21)
[1] 0.03083403

You can also try more challenging values.

> n<-10000; a<-200; r<-0.5; S<-rLD(n,a,r)
> c¢(min(8) ,max(S))
[1] 2615 587966401965
> quantile(S,c(0.25,0.5,0.75))
25% 50% 75%
36402.75 106906.50 472755.75
> GF.est(S)
[1] 200.7923817 0.4998954

Other estimators are given for sake of comparison. You can compare different
methods on simulated samples by compare.est. The function retuns boxplots and
mean squared errors: the lower the value, the better the estimator.

> compare.est(2,0.8,100,100)
[1] 0.2416981 0.2935468 0.4946447 0.4613086 0.6068226 1.2763606

We have included a few sets of published data. Open the LD.R script in an editor
to see the references and data.

> GF.est(LD43a)
[1] 7.056536 1.083392
> GF.est (LD43b)
[1] 0.6932664 0.4944009
> GF.est(B9%4)
[1] 0.7086430 0.8240959
> GF.confint (B94)
2.5 % 97.5 %
alpha 0.6501004 0.7671857
rho 0.7382408 0.9099511
> GF.test.rho(B94,1)
[1] 2.963898e-05

You can declare your own data using the same commands as in the script (paren-
thesize if more than one line).

> mydata <- ¢(0,1,0,0,2,34,0,5,0,0,89,3,0,4)
> mydata<-c(rep(0,49),rep(1,34),rep(2,8),rep(8,2),45,76,89)

If your data are in an Excel file, save it as a .csv file, then import it into R.
> MD <- scan("C:\\path\\directory\\mydata.csv")

The simplest may be to type your data in a script file like LD.R, and source it.

3

1.2 You are an experienced R user

This is only a script, and not a R package. The entries have not been protected and
some functions might fail on extreme entries. We have tried to respect the spirit and
scope of R but we also have focused on clarity and readability of the codes. There is
certainly room for improvement in precision and computing time. You are welcome to
read and modify the code for your own usage, and get back to us for possible improve-
ment. The main parameters of the Generating Function estimators are entered in the
tuning () function. They have been adjusted in order to minimize the variance and
optimize the range of applicability. With these values, Generating Function estimates
can be computed for samples of size n of the LD(a, p), with:

e n <109,
o «a < 200,

e p = 0.5,

We believe these values cover any potential application.

2 Functions

The functions in the LD.R script match the theoretical results exposed in the paper.
Each code comes with a short description of the function, and comments explaining the
meaning of each command. Some functions were needed for programming structure,
but they are not called independently; they are not documented here. We only describe
functions of current usage.

2.1 Distributions

The functions treating the Yule and Luria-Delbriick distributions have a similar syntax
as for other distributions in R.

e rY(n,rho) returns a sample of size n of the Y(p);
e rLD(n,alpha,rho) returns a sample of size n of the LD(a, p);
e dY(m,rho) returns in a vector the probabilities pj of the Y(p) for k from 0 to m;

e dLD(m,alpha,rho) returns in a vector the probabilities g of the LD(«, p) for k
from 0 to m;

e pY(m,rho) returns the probability to be lesser or equal to m for the Y(p);

e pLD(m,alpha,rho) returns the probability to be lesser or equal to m for the
LD(a, p);

e qY(p,rho) returns the quantile of order p, 0 < p < 1 for the Y(p);

e gLD(p,alpha,rho) returns the quantile of order p, 0 < p < 1 for the LD(«, p).

2.2

Generating Function estimates

The following functions can be used.

2.3

GF.est(S) returns the GF point estimates of o and p from a sample S of the
LD(a, p);

GF.confint (S, level) returns the confidence intervals for o and p from a sample
S of the LD(q, p) (default level: 0.95);

GF.test.alpha(S,a0) returns the p-value for the one-sided test of @ = a0 from a
sample S of the LD(a, p); The side tested is that of the estimate, so the returned
p-value is lesser than 0.5.

GF.test.rho(S,r0) returns the p-value for the one-sided test of p = r0 from a
sample S of the LD(a, p); The side tested is that of the estimate, so the returned
p-value is lesser than 0.5.

Maximum Likelihood estimates

The following functions can be used.

24

ML.est(S,win) returns the ML point estimates of a and p from a sample S of
the LD(a, p); The data are winsorized at win (default=>500).

Fisher.info(alpha,rho,max.sum) returns the Fisher information matrix for
the LD(q, p). Infinite sums are truncated at max.sum.

Other estimates

For sake of comparison, we have included other estimators of «, though we do not
recommend their use. They are documented in Foster (2006).

PO.est(8) returns an estimates of « for a sample S of the LD(«, p), using the
po-method

LC.est(S) returns an estimates of o for a sample S of the LD(«, p), using the
Lea-Coulson median method (assuming p = 1).

JM.est(S) returns an estimates of « for a sample S of the LD(«a, p), using Jones’
median method (assuming p = 1).

KQ.est (8) returns an estimates of « for a sample S of the LD(«, p), using Koch’s
quartiles method.

AC.est(S) returns an estimates of a for a sample S of the LD(«, p), using the
accumulation of clones method.

We have included a function compare.est(alpha,rho,E,n) that compares the GF
estimator to the 5 estimation methods above. The function simulates E samples of size
n (default value 100) of the LD(«, p). On each of the E samples, it computes estimates
of a by the 6 methods. The 6 mean quadratic errors are returned. Boxplots of the
estimates are represented, together with the target value in red.

	Foreword
	You have never used R
	You are an experienced R user

	Functions
	Distributions
	Generating Function estimates
	Maximum Likelihood estimates
	Other estimates

