
New Advances in Alpha-Beta Searching 

Jonathan Schaeffer 
Dept. of Computing Science, University of Alberta, 

615 General Services Building, 
Edmonton, Alberta, Canada T6G 2H 1 

jonathan@cs.ualberta.ca 

Abstract 

Alpha-Beta has been the algorithm of choice for 
game-tree search for over three decades. Its suc- 
cess is largely attributable to a variety of enhance- 
ments to the basic algorithm that can dramatically 
improve the search efficiency. Although state-of- 
the-art game-playing programs build trees that are 
close in size to the minimal Alpha-Beta search 
tree, this paper shows that there is still room for 
improvement. Three new enhancements are pre- 
sented: best-first Alpha-Beta search, better use of 
transpositions, and improving aspiration search un- 
der real-time constraints. Measurements show that 
these improvements can reduce search effort by 
35%. 

Keywords: Alpha-Beta, best-first search, SSS*, heuristic 
search, computer chess. 

1 Introduction 

The Alpha-Beta search algorithm is at the heart of the pro- 
gramming strategy for many games. Although this simplistic 
depth-first, brute-force approach has not found favor in the 
artificial intelligence community, it is hard to argue with its 
success. Programs such as Deep Thought in chess (playing at 
Grandmaster strength [lo]), Chinook at checkers (the Man- 
Machine World Champion [27]) and Logistello in Othello 
(much stronger than all humans [4]) have achieved spectacu- 
lar success with this algorithm. Alternative search strategies 
are promising in theory but the results have yet to be demon- 
strated in practice (for example, BPIP [ 11, B* [2], Conspiracy 
Numbers [ 161). 

Three decades of research into Alpha-Beta has resulted in 
a large number of enhancements to the algorithm including: 

1. Transpositions. Usually the search space is referred to 
as a tree. However, it is actually a directed acyclic 
graph. Recognizing previously visited nodes allows 
one to eliminate potentially large portions of the tree 
traversed by Alpha-Beta. Transposition tables are used 
to save information about visited nodes, in the event that 
these nodes are revisited [25]. 

Permission to make digital/hard copies of all or part of this material for 
personal or classroom use is granted without fee provided that the copies 
are not made or distributed for profit or commercial advantage, the copy- 
right notice, the title of the publication and its date appear, and notice is 
given that copyright is by permission of the ACM, Inc. To copy otherwise, 
to republish, to post on servers or to redistribute to lists, requires specific 
permission and/or fee. 
CSC ‘96, Philadelphia PA USA 

Q 1996 ACM 0-89791-828-2/96/02..$3.50 . 

Aske Plaat 
Dept. of Computer Science, Erasmus University. 

Room H4-3 I, P.O. Box 1738, 
3000 DR Rotterdam, The Netherlands 

plaatOcs.few.eur.nl 

2. 

3. 

4. 

Move ordering. The effectiveness of Alpha-Beta cut- 
offs is maximized if the best move is considered first at 
all interior nodes of the search tree. Hence research has 
concentrated on static (knowledge-based) and dynamic 
(information extracted from the search tree) schemes 
for ordering moves in a best-to-worst order. Techniques 
such as iterative deepening and the history heuristic have 
shown that it is possible to achieve excellent move or- 
dering [25]. 

Minimal windows. Alpha-Beta searches with a lower 
bound (a) and an upper bound (p) on the range of useful 
search values, the so-called search window. Narrowing 
this window can increase the likelihood of a cutoff [25]. 
The narrowest, or minimal, window occurs when a+ 1 = 
/l (for integer-valued leaf nodes). 

Variable search depth. All moves are not equal. Some 
moves are weak and should be allocated few search 
resources. Other moves have potential and should 
be explored further. Instead of a fixed-depth search, 
many game-playing programs reduce the search depth 
for weak moves and increase it for strong moves. 

The effects of points l-3 can be easily quantified. All one 
has to do is build fixed-depth search trees with/without the 
enhancement and compare the tree size. Unfortunately, it 
is difficult to quantify the effects of variable search depths. 
Here not only the size of the search tree must be considered, 
but also the quality of the answer provided. We do not know 
of any fair way of doing this comparison. 

In this paper we consider three new enhancements to 
the Alpha-Beta algorithm. The first one concerns aspira- 
tion searching. An Alpha-Beta search can be called with a 
lower bound of --oo and an upper bound of +m. Experience 
shows that narrowing this window can significantly reduce 
the search effort. Aspiration search makes the initial call to 
Alpha-Beta with a small search window centered around the 
expected value. No problems occur if the search value falls 
in the window (has an accurate value) or exceeds the window 
(fail high-a better value than expected). The problem oc- 
curs when the value of the first move is less than the search 
window (fail low). 

In the fail low scenario, our search value expectations are 
seriously wrong. The usual resolution of this problem is to 
re-search the move with the correct search window to find 
its true value, and then continue to examine other moves 
looking for an improvement. In the critical period until the 
program finds the right move, it may not be able to play a 
reasonable move if forced to move because of (time) resource 
constraints. Instead, on a fail low we propose to restart the 

-124- 



search and use the transposition table values to seed a new 
iterative-deepening search. In this way, the new best move is 
quickly found. Experiments in chess show that this not only 
finds an alternative best move quickly, but also does so with 
less search effort. 

The second enhancement takes the idea of minimal win- 
dows to the extreme: all searches are performed with a min- 
imal window. The result of the search is a bound on the true 
value. A series of searches allows one to converge on the 
minimax value. One way of using this is to start with an up- 
per bound of +oo and search to successively lower that bound 
until the exact value is found. Surprisingly, this algorithm 
expands the same leaf nodes in the same order as the best-first 
algorithm SSS* [28]. In effect, SSS* is now a special case 
of depth-first Alpha-Beta. 

Instead of starting at + and lowering the bound (SSS*), 
or starting at --oo and raising the bound (DUAL* [15]), we 
can start with an approximation of the bound and converge 
from there. Using the score from the previous iteration of an 
iterative-deepening search yields the new MTD(f) algorithm. 
For chess, experimental results show this to be a 9-16% 
improvement over the algorithm of choice by most chess 
programmers (aspiration window enhanced NegaScout [22]). 

The third enhancement improves the benefit of transposi- 
tions. For each node, a transposition table typically stores the 
depth to which that node was searched, the score achieved 
and the best move. When a node is visited in the search, if 
the table entry’s value does not cause a cutoff, then the best 
move saved in that entry is searched first before other moves 
are considered. However, what if another move transposes 
into a previously searched part of the tree and that entry has a 
value sufficient for a cutoff? Conventional implementations 
will miss this cheap cutoff. 

The Enhanced Transposition Cutoff (ETC) attempts to 
maximize the benefits of the transposition table by doing 
additional lookups. By looking up all successors of a node 
in the table, additional transpositions to other parts of the 
tree can be detected. In particular, if one of these lookups 
produces a value sufficient for a cutoff, the search can be 
stopped at this node. For chess, experiments show that ETC 
can reduce the search tree by 28%. 

The benefits of these enhancements are not independent of 
each other. Experimental results shows that the combination 
of MTD(f) and ETC results in a 35% reduction over con- 
ventional aspiration window NegaScout. Given that some 
researchers have speculated that there is little of interest left 
to explore in sequential fixed-depth Alpha-Beta searching 
[25], the magnitude of the improvement is both significant 
and surprising. 

2 Current State of the Art 

There are two popular criteria for assessing the search effi- 
ciency: the quality of move ordering and the closeness of the 
search tree to the theoretical minimal tree. To give an idea 
of the state-of-the-art, we present measurements for these 
two criteria for a tournament quality chess program, Phoenix 
r241. 

Move Ordering in Last Iteration 

‘OO I 

I 
B d 
* 85 - 

Phoenix + 

80- ’ 0 I 2 3 4 5 6 1 8 9 
Depth 

Figure 1: Quality of Move Ordering by Depth 

1 

1 I:1 

2 1 

2 3 4 5 6 7 8 9 
Depth 

Figure 2: Efficiency Relative to Minimal Graph 

2.1 Quality of Move Ordering 

Considerable research effort has been devoted to improving 
the move ordering, so that cutoffs will be found as soon as 
possible (for example, the history heuristic, killer heuristic, 
iterative deepening and transposition tables [25]). Ideally, 
only one move should be considered at nodes where a cutoff 
is expected. 

Figure 1 shows how often the first move considered caused 
a cutoff at nodes where a cutoff occurred (note the vertical 
scale). The algorithm used is NegaScout enhanced with 
iterative deepening, transposition tables. aspiration windows 
and the history heuristic. The data points were averaged over 
twenty test positions. The quality of move ordering of the last 
ply is shown. For nodes that have been searched deeply, we 
seeasuccessrateofover90-95%, in line withresultsreported 
by others [9]. Since the searches used iterative deepening, 
all but the deepest nodes benefited from the presence of the 
best move of the previous iteration in the transposition table. 
Near the leaf nodes, the quality of move ordering decreases 
to roughly 90%. Here the program does not benefit from 
the transposition table and has to rely on move ordering 

-125- 



heuristics. Unfortunately, the majority of the nodes in the 
search tree are at the deepest levels. Thus, there is still some 
room for improvement. 

A phenomenon visible in the figure is an odd/even oscil- 
lation. At even levels in the tree, the move ordering appears 
to be less effective than at odd levels. This is caused by the 
asymmetric nature of the search tree, where nodes along a 
line alternate between those with cutoffs (one child exam- 
ined) and those where all children must be examined. This is 
clearly illustrated by the formula for the minimal search tree, 
wLdR] + wrd/z] - 1 leaf nodes (assuming fixed width w and 

depth d), whose growth ratio depends on whether d is even 
or odd. 

The evidence suggests that the research on move-ordering 
techniques for Alpha-Beta search has been very successful. 

2.2. The Minimal Tree 
in a seminal paper in 1975, Knuth and Moore introduced the 
notion of the minimal tree [12]. Any algorithm that wants 
to find the minimax value has to search at least this tree. 
For actual games, where the game tree is nonuniform, the 
minimal tree is usually taken to be Alpha-Beta’s best-case. 
Ebeling describes a procedure to compute the size of the 
search tree in relation to Alpha-Beta’s best-case [8]. 

The minimal tree has been used by many authors as a yard- 
stick to compare the performance of their search algorithms 
in practice. For example, in chess, Belle is reported to be 
within a factor of 2.2 of the minimal Alpha-Beta tree [8], 
Phoenix within 1.4 (measured in 1985) [24], Hitech within 
1.5 [8] and Zugzwung within 1.2 [9]. Using Ebeling’s proce- 
dure, we measured the performance of the current version of 
Phoenix. The results of the comparison of NegaScout against 
this minimal tree are shown in figure 2 (based on all nodes 
searched in the last iteration). The figure confirms that the 
program can search close to the minimal tree. 

An interesting feature is that Phoenix has a significantly 
worse performance for even depths. The reason for this can 
be found in the structure of the minimal tree. This leads to 
an important point: reporting the efficiency of a fixed-depth 
search algorithm based on odd-ply data is misleading. The 
odd-ply iterations give an inflated view of the search effi- 
ciency; even-ply data is more representative of real program 
performance. In light of this, the Hitech result of 1.5 for 
8-ply searches seems even more impressive [8]. 

3 Improvements 
The measurements of the previous section indicate that the 
search efficiency of Alpha-Beta is at a high level. We present 
three new Alpha-Beta enhancements to further narrow the 
gap between trees built in practice and the minimal search 
tree. 

3.1 Best-First versus Depth-First? 
Alpha-Beta does a rigid depth-first, left-to-right traversal of 
the tree. In contrast, the best-first approach of SSS* seems 
more appealing. It was proven that SSS* will never examine 
more nodes than Alpha-Beta [5, 281, and numerous simu- 
lations showed it to build significantly smaller trees (recent 
publications include [3, 7, 10, 11,231). 

function AB-SSS*(n) + f; 
g:=+m; 
repeat 

fl := g; 
g := Alpha-Beta-with-l’T(n, p - 1, /3); 

until g = l.3; 
return g; 

Figure 3: SSS* as a Sequence of Alpha-Beta Searches with 
a Transposition Table 

Despite the encouraging results, SSS* has been shunned 
in practice because of a number of perceived drawbacks: 

It is a complex algorithm that is difficult to understand 
or adapt. The algorithm is formulated as an implicit 
finite-state machine with six ingeniously interlocking 
state-space operators that manipulates a sorted OPEN 
list. 

It is slow, because of the overhead of maintaining a 
sorted OPEN list. 

It has memory requirements that are exponential in the 
search depth. It is widely believed that this makes SSS* 
unsuitable for practical use. 

This unsatisfactory state of affairs has left many re- 
searchers in the field with anagging feeling. Although Alpha- 
Beta-based programs achieve good results, it could be that 
depth-first strategies are missing out on some fundamental 
notion, and that best-first is a better way.’ 

Alpha-Beta Goes Best-First 
The idea of minimal window search can be taken to its ex- 
treme: perform all Alpha-Beta searches with a minimal win- 
dow. Since the result of a minimal window search is a lower 
or upper bound on the true value, a series of searches must 
be conducted to converge on the value. Doing extra searches 
sounds expensive, but a cache (the transposition table) can 
be used to prevent unnecessary re-searching. 

Figure 3 shows one instance of minimal-windows-only 
search. Start with +- as an upper bound on the search and 
then repeatedly decrease it until the true value is found. It 
has been formally proven that this code, called AB-SSS*, 
expands the same leaf nodes as SSS* [17, 20, 211. Surpris- 
ingly, a best-first algorithm can be reformulated as a special 
case of a depth-first algorithm. 

Other convergence schemes are possible. Starting with a 
lower bound of--m and refining it upward yields the DUAL* 
algorithm (AB-DUAL*) [15, 221. Another idea is to use 
the bounds that are returned by Alpha-Beta in a bisection 
scheme, yielding the C* algorithm [6]. 

Instead of starting with an extreme initial value, one can 
use a heuristic value to “guess” at an initial bound, and 
then converge either upward or downward towards the min- 
imax value, depending on whether the bound was a lower 

‘There is potential for confusion between algorithms such as 
SSS*, which are principally fixed-depth best-first minimax searches, 
and a very different, variable-depth, best-first minimax algorithm 
by Korf and Chickering [ 141. 

-126- 



Figure 4: Leaf Node Count Chess 

bound or an upper bound, respectively. We call this vari- 
ant MTD(f) (an explanation for the choice of name and 
the code, a minor modification to figure 3, can be found 
in [ 19. 201). The intuition behind MTD(f) is that starting a 
sequence of minimal-window Alpha-Beta calls close to the 
minimax value is cheaper than using a start value of +oo or 
-00, as in SSS* or DUAL*. Empirical tests have established 
this assumption to be true, for simulations and for a number 
of games [19, 20, 21, 241. SSS* and DUAL* consists of 
many searches that compute uninteresting bounds that are far 
away from the target value. MTD(I) consists of a few well- 
placed searches, yielding bounds close to the target. In an 
iterative deepening setting, a natural choice for the heuristic 
start value is the value of a previous iteration. 

Test Results 
Experiments have been conducted for a variety of algorithms 
using Phoenix. Experiments have also been performed for 
checkers and Othello with results similar to those reported 
here [20, 211. All algorithms use the same base procedures 
with iterative deepening, transposition tables and the history 
heuristic. Forward pruning and selective search have been 
turned off to ensure comparable results. Results were ob- 
tained using 20 test positions that were chosen for providing 
reliable and representative results. The results were cross- 
checked with different positions and for deeper searches. 

Figure 4 shows the number of leaf nodes evaluated by 
Alpha-Beta, Aspiration NegaScout (NegaScout enhanced 
with aspiration windows), AB-SSS*, AB-DUAL* and 
MTD(f) for different search depths, Aspiration NegaScout is 
the current algorithm of choice by most chess programmers, 
therefore we have chosen this algorithm as our baseline. Fig- 
ure 5 shows that MTD(f)‘s execution time performance is 
proportional to the leaf node count. 

From these figures we see a number of interesting points. 
First, the performance of all algorithms is within a range of 
+ 15%, contradicting simulation results that claim SSS* can 
be significantly better than Alpha-Beta [ 151. The tests differ 
because Alpha-Beta-enhancements have improved the per- 
formance of all algorithms, and because simulated trees lack 
essential properties of real trees [ZO, 211. Given these re- 
sults, we find that performance comparisons based on vanilla 
textbook versions of Alpha-Beta are of no value for the real 

Chess 

3 4 5 6 7 x 9 
Depth 

Figure 5: Execution Time Chess 

world. 
Second, MTD(f) performs better than all other tested al- 

gorithms. The intuition that starting close to the minimax 
value is efficient has been experimentally justified. 

Third, the depth-first Aspiration NegaScout algorithm can 
outperform the best-first SSS* algorithm. NegaScout uses 
minimal-window search, likeour reformulationof SSS*. US- 
ing a non-optimal start value of +- leaves room for SSS* to 

be outperformed. 
Fourth, a word of caution. Since the tested algorithms per- 

form quite close together, the relative differences are quite 
sensitive to variations in input parameters, such as charac- 
teristics of test positions. In generalizing these results, one 
should keep this sensitivity in mind. Using these numbers as 
absolute predictors for other situations would not do justice 
to the complexities of real-life game trees. The experimental 
data is better suited to provide insight on, or guide and verify 
hypotheses about these complexities. 

Other results borne out by experiments are that the mem- 
ory requirements of all algorithms are perfectly acceptable 
for typical tournament play, since only a small subset of the 
visited nodes (the solution tree) has to be stored in mem- 
ory. This means that the widely held belief that SSS* uses 
inordinate amounts of memory is not correct [ 191. 

SSS*: A Footnote in the Game-Tree Search Literature? 
For many years, SSS* has cast doubt on the effectiveness of 
depth-first minimax strategies, because a number of publica- 
tions showed that best-first strategies had the potential to be 
better. We show that best-first can be reformulated as depth- 
first plus memory. This reformulation led us to the following 
conclusions, dispelling a number of myths: 

l The A*-like OPEN list-based formulation of SSS* is un- 
clear and inefficient. The AB-SSS* reformulation using 
a recursive depth-first procedure and a transposition ta- 
ble shows more clearly how the algorithm traverses its 
trees, and is easily and efficiently implemented. 

l SSS* is not “better” than Alpha-Beta (contradicting, 
for example, [23, 281). It is a special case of Alpha- 
Beta. Other variants of Alpha-Beta outperform AB- 
SSS*. Thus, the claim should be the other way around: 

-127- 



Q 1.1 : I 

N Ah ,--m 
I ’ 

\ 
‘__I C 

Figure 6: Enhanced Transposition Cutoff 

Alpha-Beta-based algorithms are better than SSS*, both 
in clarity and performance. 

Best-first algorithms such as MTD(f), DUAL* and 
SSS* do not need too much memory in practice. 

There are many application-independent enhancements 
to Alpha-Beta. Ignoring them in simulated performance 
assessments leads to incorrect results. 

The boundary between best-first and depth-first algo- 
rithms in minimax search is fuzzy. If best-first is outper- 
formed by depth-first, and if best-first can be reformu- 
lated as a special case of depth-first, perhaps we should 
look for a different criterion to classify search strategies. 
Interestingly, theliteratureon single-agent search shows 
this convergence of depth-first and best-first too, IDA* 
[ 131 being the best known example. 

MTD(f) performs better than the current algorithm of 
choice by chess programmers, and is just as easy (or 
hard) to implement. 

In light of this, we believe that SSS* should now become a 
footnote in the history of game-tree search. 

3.2 Effective Use of Transpositions 
Transposition tables are one of the Alpha-Beta enhancements. 
Normally, transpositions are checked at each visit to a node. 
If no transposition table cutoff occurs, then the best move sug- 
gested by the table is expanded depth-first, before its brothers 
are considered. A simple and relatively cheap enhancement 
to improve search efficiency is to try and make more effective 
use of the transposition table. Consider interior node N with 
children B and C (figure 6). The transposition table suggests 
move B and as long as it produces a cutoff, move C will never 
be explored. However, node C might transpose into a part 
of the tree, node A, that has already been analyzed and can 
potentially produce an immediate cutoff. Before doing any 
search at an interior node, a quick check of all the positions 
arising from this node (nodes B and C) in the transposition 
table may result in finding a cutoff. We call this technique 
Enhanced Transposition Cutoffs, ETC. It performs transpo- 
sition table lookups on all successors of a node, looking for 
transpositions into previously searched lines. In a left-to- 
right search, ETC encourages subtrees in the right part of the 
tree to transpose into the left. 

Figure 7 shows the results of enhancing Phoenix with ETC. 
For search depth 8, ETC lowered the number of expanded 

I : 1.4 I 

2 3 4 5 6 7 x Y 
Depth 

Figure 7: Effectiveness of ETC in Phoenix 

total nodes by a factor of 1.28 for NegaScout enhanced with 
aspiration searching. The combination of MTD(f) and ETC 
yields a factor of 1.35 fewer total nodes as compared to 
Phoenix’s original algorithm. 

The reduction in search tree size offered by ETC is, in part, 
offset by the increased computation per node. For chess, 
it appears that performing ETC at all interior nodes is not 
optimal. A compromise, performing ETC at all interior nodes 
that are more than 2 ply away from the leaves, results in 
most of the ETC benefits with only a small computational 
overhead. Thus, ETC is a practical enhancement to most 
Alpha-Beta search programs. 

In addition, we have experimented with more elaborate 
lookahead schemes. For example, ETC can be enhanced to 
also transpose from left to right. At an interior node, all the 
children’s positions are looked up in the transposition table. 
If no cutoff occurs, then check to see if one of the children 
leads to a position with a cutoff score that has not been 
searched deep enough. If so, then use the move leading to this 
score as the first move to try in this position. Unfortunately, 
several variations on this idea have failed to yield a tangible 
improvement. 

3.3 Failing Low at the Root 

Aspiration searching anticipates where the value of a search 
lies, and selects a small search window that encompasses 
those expectations. If the search returns a result within the 
aspiration window, then the expectations have been realized. 
Exceeding the search window is usually not a problem; the 
search is more favorable than anticipated. However, under 
the real-time constraints of a tournament game, a first move 
that returns a result below the window (failing low) can cause 
serious problems. Typically, most Alpha-Beta implementa- 
tions re-search the move to find its true score and then hunt 
for better moves. Until the right move is found, there is a 
danger that (time) resources will run out and the program 
will be forced to move before resolving the difficulty. The 
program needs to find an alternative best move quickly. 

The solution is to restart the search. If at depth i the search 
fails low, restart the search back at depth 1. Information 

-128- 



about the previous search is contained in the transposition 
table. When the search is restarted, the best move has a bad 
score allowing other moves to move ahead of it in the ordered 
move list. Typically, the second best move now becomes best 
and stays there until depth i is reached again. By restarting 
the search, an alternative best move is quickly generated, 
alleviating the problems of the real-time constraint. 

This idea has been successful in the checkers program Chi- 
nook [26]. To test its effectiveness in chess, the games played 
by Phoenix in the recent World Computer Chess Champi- 
onship (Hong Kong, 1995) were scrutinized. Three nontriv- 
ial fail low scenarios occurred in the five games. Phoenix 
was modified so that we could see the impact of the restart 
mechanism on these three positions. Note that in the follow- 
ing results, for compatibility with the results generated in the 
World Championship, Phoenix is using search extensions. 

I. The fail low occurred after a search of 3. I million nodes 
(8 ply). Phoenix was unable to find the correct move un- 
til 10.7 million nodes had been examined. Using restart, 
the program changed its mind several times before fi- 
nally finding the right move at 8.4 million nodes. 

2. The fail low occurred at 637,000 nodes (7 ply). Without 
restart, the correct move was found at 838,000 nodes. 
With restart, it is found at 638,000 (3 ply) and deeper 
search only confirms the move choice. 

3. A fail low occurs at 4 ply and then again at 8 
ply (1,200,OOO nodes). The right move is found at 
12,300,OOO nodes. With restart, the failure at 4 ply 
restarts the search. This results in different move order- 
ing and different search extensions. The correct move 
is found after only 203,000 nodes! 

The above examples are necessarily anecdotal. Finding inter- 
esting fail low examples is difficult; there are no test suites of 
fail low positions readily available. However, these results 
are consistent with experience gathered from the Chinook 
program, indicating that the restart may be a significant im- 
provement in the search. Not only does it quickly find better 
moves in critical positions, our experience is that in the pres- 
ence of search extensions the search results are also more 
accurate. 

4 Conclusions & Future Research 
Even after 30 years of research, the Alpha-Beta algorithm 
continues to surprise. Despite many inventive alternatives, 
none appears poised to supplant Alpha-Beta as the algorithm 
of choice by practitioners. The exponential growth of the tree 
with the depth of search hasn’t been an obstacle to achieving 
high performance in popular games such as chess, checkers 
and Othello. 

This paper presents experimental results showing that in 
practice it is possible to build almost minimal Alpha-Beta 
trees. This is a surprising result, given that an oracle is re- 
quired to achieve perfection. Further, this high performance 
is achieved without any explicit domain-specific knowledge. 
By taking advantage of search space properties (transposi- 
tions), minimizing unnecessary information (minimal win- 
dows) and using dynamic knowledge gained from the search 

2 3 4 3 6 7 x 9 
Depth 

Figure 8: LFMG Is Not Minimal, Phoenix 

itself (history heuristic), Alpha-Beta avoids the knowledge 
acquisition bottleneck which has been an obstacle for many 
AI applications. 

Given the already high level of Alpha-Beta performance, 
it is surprising that there is still room for significant improve- 
ment. MTD(f) and ETC reduce search effort in chess by 
roughly 35%. Restarting fail low searches also improves the 
search, but in a way that is difficult to quantify. Figure 8 
is a new version of figure 2, updated to reflect the MTD(f) 
and ETC enhancements. This figure also shows that in prac- 
tice Alpha-Beta’s best-case is not the smallest graph that 
proves the minimax value. What we have been using as the 
minimal tree is really the left-most minitnul graph (LFMG), 
constructed by a left-to-right traversal of a graph. The real 
minimal graph (RMG) is smaller, requiring that if there is a 
choice of cutoff move, the one building the smallest tree be 
selected. Computing the RMG is computationally infeasible 
for interesting search depths. The figure shows a loose upper 
bound on the RMG that we have computed [ 181. 

This leads to the obvious question: what other improve- 
ments are waiting to be discovered? The minimal graph 
discussion suggests that one might try to find the cheapest 
cutoff. Although we have a number of ideas here, none of 
them has yet translated into something usable in practice. 

One area that has yet to be adequately explored is the role of 
memory. Additional memory can be used to increase the size 
of the transposition table, but this leads todiminishingreturns 
1193. If large endgame databases are used (as in checkers), 
then additional memory can be used for caching expensive 
disk I/O. Most chess programs fill all of available memory 
with a transposition table. Given the increased availability of 
cheap memory, we pose the question: how do you improve 
Alpha-Beta search when given a gigabyte of RAM? 

5 Acknowledgments 

Reformulating SSS* and creating MTD(f) was joint research 
with Wim Pijls and Arie de Bruin. We gratefully acknowl- 
edge their cooperation. 

Some results of this research have appeared previously in 
[l’,]. 

-129- 



References 

[II 

PI 

[31 

t41 

PI 

[61 

171 

181 

PI 

1101 

[]]I 

1121 

[I31 

1141 

Eric Baum. How a bayesian approaches games like 
chess. In Proceedings of the AAA1’93 Fall Symposium, 
pages 48-50. American Association for Artificial Intel- 
ligence, AAAI Press, October 1993. 

Hans J. Berliner and Chris McConnell. B* probability 
based search. Artijicial Intelligence, 1996. To appear. 

Subir Bhattacharya and A. Bagchi. A faster alternative 
to SSS* with extension to variable memory. Infornla- 
tionprocessing letters, 47:209-214, September 1993. 

Michael Buro. Techniken fiir die Bewertung von Spiel- 
situation anhand von Beispielen. PhD thesis, Univer- 
sitslt-Gesamthochschule Paderborn, Germany, Septem- 
ber 1994. 

Murray Campbell. Algorithms for the parallel search of 
game trees. Master’s thesis, Department of Computing 
Science, University of Alberta, Canada, August 198 1. 

K. Coplan. A special-purpose machine for an im- 
proved search algorithm for deep chess combinations. 
In M.R.B. Clarke, editor, Advances in Computer Chess 
3, April 1981, pages 2543. Pergamon Press, Oxford, 
1982. 

Arie de Bruin, Wim Pijls, and Aske Plaat. Solution trees 
as a basis for game tree search. Technical Report EUR- 
CS-94-04. Department of Computer Science, Erasmus 
University Rotterdam, Rotterdam, The Netherlands, 
May 1994. 

Carl Ebeling. All the Right Moves. MIT Press, Cam- 
bridge, Massachusetts, 1987. 

Rainer Feldmann. Spielbaumsuche mit massiv 
parallelen Systemen. PhD thesis, Universittit- 
Gesamthochschule Paderborn, Germany, May 1993. 

Feng-Hsiung Hsu. Large Scale Parallelization of 
Alpha-Beta Search: An Algorithmic and Architectural 
Study with Computer Chess. PhD thesis, Carnegie Mel- 
lon University, Pittsburgh, PA, February 1990. 

Hermann Kaindl, Reza Shams, and Helmut Horacek. 
Minimax search algorithms with and without aspira- 
tion windows. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 13( 12): 1225-1235, Decem- 
ber 1991. 

Donald E. Knuth and Ronald W. Moore. An analysis 
of alpha-beta pruning. Artificial Intelligence, 6(4):293- 
326,1975. 

Richard E. Korf. Iterative deepening: An optimal ad- 
missible tree search. Artificial Intelligence, 27:97-109, 
1985. 

Richard E. Korf and David W. Chickering. Best-first 
minimax search: Othello results. In Proceedings of 
the 12th National Conference on Artijcial Intelligence 
(AAA1’94), volume 2, pages 1365-1370. American As- 
sociation for Artificial Intelligence, AAAI Press, Au- 
gust 1994. 

[I51 

1161 

[I71 

iI81 

[191 

PO1 

1211 

WI 

1231 

[241 

[251 

1261 

1271 

T. Anthony Marsland, Alexander Reinefeld, and 
Jonathan Schaeffer. Low overhead alternatives to SSS*. 
Artificial Intelligence, 31: 185-199, 1987. 

David Allen McAllester. Conspiracy numbers for min- 
max searching. Art$cial Intelligence, 35:287-310, 
1988. 

Wim Pijls, Arie de Bruin, and AskePlaat. Solutiontrees 
as a unifying concept for game tree algorithms. Tech- 
nical Report EUR-CS-95-01, Erasmus University, De- 
partment of Computer Science, Rotterdam, The Nether- 
lands, April 1995. 

Aske Plaat, Jonathan Schaeffer, Wtm Pijls, and Arie 
de Bruin. Nearly optimal minimax tree search? Tech- 
nical Report TR-CS-94-19, Department of Computing 
Science, UniversityofAlberta,Edmonton,AB,Canada, 
December 1994. 

Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie 
de Bruin. Best-first fixed-depth game-tree search in 
practice. In Proceedings of the 14th International Joint 
Conference on Arttjicial Intelligence (IJCAI-95), vol- 
ume 1, pages 273-279, August 1995. 

Aske Plaat. Jonathan Schaeffer, Wim Pijls, and Arie 
de Bruin. A minimax algorithm better than SSS*. Ar- 
tijcial Intelligence, 1995. Accepted for publication. 

Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie 
de Bruin. A minimax algorithm better than Alpha-Beta? 
no and yes. Technical Report 95-15, University of Al- 
berta, Department of Computing Science, Edmonton, 
AB, Canada T6G 2H1, May 1995. 

Alexander Reinefeld. Spielbaum Suchveflahren. 
Informatik-Fachberichte 200. Springer Verlag, 1989. 

Alexander Reinefeld and Peter Ridinger. Time-efficient 
state space search. Artificial Intelligence, 71(2):397- 
408, 1994. 

Jonathan Schaeffer. Experiments in Search and Knowl- 
edge. PhD thesis, Department of Computing Science, 
University of Waterloo, Canada, 1986. Available as 
University of Alberta technical report TR86-12. 

Jonathan Schaeffer. The history heuristic and alpha- 
beta search enhancements in practice. IEEE Transac- 
tions on Pattern Analysis and Machine Intelligence, 
11(1):1203-1212,November 1989. 

Jonathan Schaeffer, Joseph Culberson, Norman Treloar, 
Brent Knight, Paul Lu, and Duane Szafron. A world 
championship caliber checkers program. Artijcial In- 
telligence, 53(2-3):273-290, 1992. 

Jonathan Schaeffer, Robert Lake, Paul Lu, and Martin 
Bryant. Chinook: The world man-machine checkers 
champion. AI Magazine, 1996. To appear. 

[28] George C. Stockman. A minimax algorithm better than 
alpha-beta? Artijcial Intelligence, 12(2): 179-196, 
1979. 

-130- 


